Нонограми, також відомі як Picross або Griddlers, - це логічні картинки-картинки, в яких комірки в сітці повинні бути пофарбовані або залишені порожніми відповідно до цифр збоку сітки, щоб виявити приховану картину. У цьому типі головоломки числа є формою дискретної томографії, яка вимірює кількість нерозривних ліній заповнених квадратів у будь-якому заданому рядку чи стовпчику. Наприклад, підказка "4 8 3" означатиме, що в такому порядку є набори з чотирьох, восьми та трьох заповнених квадратів, принаймні один порожній квадрат між послідовними групами.
Ці пазли часто чорно-білі - описують бінарне зображення - але вони також можуть бути кольоровими. Якщо кольорові, числові підказки також кольорові для позначення кольору квадратів. Два різного кольору кольори можуть мати або не мати проміжку між ними. Наприклад, чорна четвірка, за якою дві червоні, може означати чотири чорні скриньки, кілька порожніх пробілів і дві червоні поля, або це може просто означати чотири чорні коробки, за якими відразу дві червоні.
Нонограми не мають теоретичних обмежень щодо розміру і не обмежуються квадратними макетами.
Щоб вирішити пазл, потрібно визначити, які клітинки будуть полями, а які - порожніми. Розв’язувачі часто використовують крапку або хрестик, щоб позначити клітини, вони впевнені, що це пробіли. Клітини, які можна визначити логікою, повинні бути заповнені. Якщо використовувати здогадки, одна помилка може поширитися на все поле і повністю зруйнувати рішення. Помилка іноді виникає на поверхні лише через деякий час, коли виправити пазл дуже важко. Прихована картина відіграє мало або взагалі ніякої ролі в процесі вирішення, оскільки може ввести в оману. Зображення може допомогти знайти та усунути помилку.
Простіші головоломки, як правило, можна вирішити, міркуючи лише про один рядок (або один стовпець) в даний момент часу, щоб визначити якомога більше вікон і пробілів у цьому рядку. Потім спробуйте інший рядок (або стовпець), поки не знайдуться рядки, що містять невизначені комірки. Складніші головоломки також можуть вимагати декількох типів "що робити?" міркування, що містять більше одного рядка (або стовпця). Це працює на пошук протиріч: Коли комірка не може бути полем, оскільки якась інша комірка видала б помилку, вона, безумовно, буде пробілом. І навпаки. Розширені вирішувачі іноді здатні шукати навіть глибше, ніж у першому "що робити?" міркування.