Constrained Conditional Model: Fundamentals and Applications

ยท Artificial Intelligence แˆ˜แŒฝแˆแ 208 ยท One Billion Knowledgeable ยท แ‰ AI-Mason (แŠจGoogle) แ‹จแ‰ฐแ‰ฐแˆจแŠจ
แ‰ฐแˆฐแˆš แˆ˜แŒฝแˆแ
2 แˆฐแ‹“ 30 แ‹ฐแ‰‚แ‰ƒ
แ‹ซแˆ‹แŒ แˆจ
แ‰ฅแ‰
แ‰ AI-แ‹จแ‰ฐแ‰ฐแˆจแŠจ
แ‹จแ‰ฐแˆฐแŒกแ‰ต แ‹ฐแˆจแŒƒแ‹Žแ‰ฝ แŠฅแŠ“ แŒแˆแŒˆแˆ›แ‹Žแ‰ฝ แ‹จแ‰ฐแˆจแŒ‹แŒˆแŒก แŠ แ‹ญแ‹ฐแˆ‰แˆ ย แ‹จแ‰ แˆˆแŒ  แˆˆแˆ˜แˆจแ‹ณแ‰ต
15 แ‹ฐแ‰‚แ‰ƒ แŠ“แˆ™แŠ“ แ‹ญแˆแˆแŒ‹แˆ‰? แ‰ แˆ›แŠ•แŠ›แ‹แˆ แŒŠแ‹œ แ‹ซแ‹ณแˆแŒกแฃ แŠจแˆ˜แˆตแˆ˜แˆญ แ‹แŒญแˆ แŠฅแŠ•แŠณย 
แŠ แŠญแˆ

แˆตแˆˆแ‹šแˆ… แŠฆแ‹ฒแ‹ฎ แˆ˜แŒฝแˆแ

What Is Constrained Conditional Model


A constrained conditional model, also known as a constrained conditional model (CCM), is a paradigm for machine learning and inference that enhances the learning of conditional models by applying declarative constraints. It is possible to utilize the constraint as a mechanism for incorporating expressive prior knowledge into the model and for instructing the learnt model to bias the assignments it generates to satisfy the constraints. While preserving the modularity and tractability of training and inference, the framework may be utilized to enable decisions in an expressive output space.


How You Will Benefit


(I) Insights, and validations about the following topics:


Chapter 1: Constrained conditional model


Chapter 2: Machine learning


Chapter 3: Natural language processing


Chapter 4: Natural language generation


Chapter 5: Feature engineering


Chapter 6: Constrained optimization


Chapter 7: Textual entailment


Chapter 8: Transliteration


Chapter 9: Structured prediction


Chapter 10: Semantic role labeling


(II) Answering the public top questions about constrained conditional model.


(III) Real world examples for the usage of constrained conditional model in many fields.


(IV) 17 appendices to explain, briefly, 266 emerging technologies in each industry to have 360-degree full understanding of constrained conditional model' technologies.


Who This Book Is For


Professionals, undergraduate and graduate students, enthusiasts, hobbyists, and those who want to go beyond basic knowledge or information for any kind of constrained conditional model.

แˆตแˆˆแ‹ฐแˆซแˆฒแ‹

Fouad Sabry is the former Regional Head of Business Development for Applications at HP. Fouad has received his B.Sc. of Computer Systems and Automatic Control in 1996, dual masterโ€™s degrees from University of Melbourne (UoM) in Australia, Master of Business Administration (MBA) in 2008, and Master of Management in Information Technology (MMIT) in 2010. Fouad has more than 30 years of experience in Information Technology and Telecommunications fields, working in local, regional, and international companies, such as Vodafone and IBM. Fouad joined HP in 2013 and helped develop the business in tens of markets. Currently, Fouad is an entrepreneur, author, futurist, and founder of One Billion Knowledge (1BK) Initiative.

แˆˆแ‹šแˆ… แŠฆแ‹ฒแ‹ฎ แˆ˜แŒฝแˆแ แ‹ฐแˆจแŒƒ แ‹ญแˆตแŒก

แˆแŠ• แŠฅแŠ•แ‹ฐแˆšแ‹ซแˆตแ‰ก แ‹ญแŠ•แŒˆแˆฉแŠ•แข

แ‹จแˆ›แ‹ณแˆ˜แŒฅ แˆ˜แˆจแŒƒ

แ‹˜แˆ˜แŠ“แ‹Š แˆตแˆแŠฎแ‰ฝ แŠฅแŠ“ แŒกแ‰ฃแ‹Šแ‹Žแ‰ฝ
แ‹จGoogle Play แˆ˜แŒฝแˆแแ‰ต แˆ˜แ‰ฐแŒแ‰ แˆชแ‹ซแ‹แŠ• แˆˆAndroid แŠฅแŠ“ iPad/iPhone แ‹ซแ‹แˆญแ‹ฑแข แŠจแŠฅแˆญแˆตแ‹Ž แˆ˜แˆˆแ‹ซ แŒ‹แˆญ แ‰ แˆซแˆตแˆฐแˆญ แ‹ญแˆ˜แˆณแˆฐแˆ‹แˆ แŠฅแŠ“ แ‰ฃแˆ‰แ‰ แ‰ต แ‹จแ‰ตแˆ แ‰ฆแ‰ณ แ‰ แˆ˜แˆตแˆ˜แˆญ แˆ‹แ‹ญ แŠฅแŠ“ แŠจแˆ˜แˆตแˆ˜แˆญ แ‹แŒญ แŠฅแŠ•แ‹ฒแ‹ซแАแ‰ก แ‹ซแˆตแ‰ฝแˆแ‹Žแ‰ณแˆแข
แˆ‹แ•แ‰ถแ–แ‰ฝ แŠฅแŠ“ แŠฎแˆแ’แ‹แ‰ฐแˆฎแ‰ฝ
แ‹จแŠฎแˆแ’แ‹แ‰ฐแˆญแ‹Ž แ‹จแ‹ตแˆญ แŠ แˆณแˆฝ แ‰ฐแŒ แ‰…แˆ˜แ‹ Google Play แˆ‹แ‹ญ แ‹จแŒˆแ‹Ÿแ‰ธแ‹แŠ• แˆ˜แŒฝแˆแแ‰ต แˆ›แŠ•แ‰ แ‰ฅ แ‹ญแ‰ฝแˆ‹แˆ‰แข

แ‰ฐแŠจแ‰ณแ‰ณแ‹ฉแŠ• แ‹ญแ‰€แŒฅแˆ‰

แ‰ฐแŒจแˆ›แˆช แ‰ Fouad Sabry

แ‰ฐแˆ˜แˆณแˆณแ‹ญ แ‰ฐแˆณแˆš แˆ˜แŒฝแˆแแ‰ต