Cumulative Distribution Function: A Mathematical Approach to Probabilistic Modeling in Robotics

· Robotics Science 31. књига · One Billion Knowledgeable · Чита Maxwell (из Google-а) уз помоћ вештачке интелигенције
Аудио-књига
7 с 3 мин
Цела верзија
Испуњава услове
Нарација вештачке интелигенције
Оцене и рецензије нису верификоване  Сазнајте више
Желите ли узорак који траје 30 мин? Слушајте увек, чак и офлајн. 
Додај

О овој аудио-књизи

1: Cumulative Distribution Function – Introduces the CDF and its foundational role in probability.


2: Cauchy Distribution – Examines this key probability distribution and its applications.


3: Expected Value – Discusses the concept of expected outcomes in statistical processes.


4: Random Variable – Explores the role of random variables in probabilistic models.


5: Independence (Probability Theory) – Analyzes independent events and their significance.


6: Central Limit Theorem – Details this fundamental theorem’s impact on data approximation.


7: Probability Density Function – Outlines the PDF and its link to continuous distributions.


8: Convergence of Random Variables – Explains convergence types and their importance in robotics.


9: MomentGenerating Function – Covers functions that summarize distribution characteristics.


10: ProbabilityGenerating Function – Introduces generating functions in probability.


11: Conditional Expectation – Examines expected values given certain known conditions.


12: Joint Probability Distribution – Describes the probability of multiple random events.


13: Lévy Distribution – Investigates this distribution and its relevance in robotics.


14: Renewal Theory – Explores theory critical to modeling repetitive events in robotics.


15: Dynkin System – Discusses this system’s role in probability structure.


16: Empirical Distribution Function – Looks at estimating distribution based on data.


17: Characteristic Function – Analyzes functions that capture distribution properties.


18: PiSystem – Reviews pisystems for constructing probability measures.


19: Probability Integral Transform – Introduces the transformation of random variables.


20: Proofs of Convergence of Random Variables – Provides proofs essential to robotics reliability.


21: Convolution of Probability Distributions – Explores combining distributions in robotics.

О аутору

Fouad Sabry is the former Regional Head of Business Development for Applications at HP. Fouad has received his B.Sc. of Computer Systems and Automatic Control in 1996, dual master’s degrees from University of Melbourne (UoM) in Australia, Master of Business Administration (MBA) in 2008, and Master of Management in Information Technology (MMIT) in 2010. Fouad has more than 30 years of experience in Information Technology and Telecommunications fields, working in local, regional, and international companies, such as Vodafone and IBM. Fouad joined HP in 2013 and helped develop the business in tens of markets. Currently, Fouad is an entrepreneur, author, futurist, and founder of One Billion Knowledge (1BK) Initiative.

Оцените ову аудио-књигу

Јавите нам своје мишљење.

Информације о слушању

Паметни телефони и таблети
Инсталирајте апликацију Google Play књиге за Android и iPad/iPhone. Аутоматски се синхронизује са налогом и омогућава вам да читате онлајн и офлајн где год да се налазите.
Лаптопови и рачунари
Књиге купљене на Google Play-у можете да читате помоћу веб-прегледача на рачунару.

Наставите да читате серијал

Још од аутора Fouad Sabry

Сличне аудио-књиге