Cumulative Distribution Function: A Mathematical Approach to Probabilistic Modeling in Robotics

· Robotics Science Книга 31 · One Billion Knowledgeable · Озвучення за допомогою ШІ: Maxwell (від Google)
Аудіокнига
7 год 3 хв
Повна
Можна додати
Озвучено за допомогою ШІ
Google не перевіряє оцінки й відгуки. Докладніше.
Хочете отримати зразок на 30 хв? Слухайте будь-коли, навіть не в мережі. 
Додати

Про цю аудіокнигу

1: Cumulative Distribution Function – Introduces the CDF and its foundational role in probability.


2: Cauchy Distribution – Examines this key probability distribution and its applications.


3: Expected Value – Discusses the concept of expected outcomes in statistical processes.


4: Random Variable – Explores the role of random variables in probabilistic models.


5: Independence (Probability Theory) – Analyzes independent events and their significance.


6: Central Limit Theorem – Details this fundamental theorem’s impact on data approximation.


7: Probability Density Function – Outlines the PDF and its link to continuous distributions.


8: Convergence of Random Variables – Explains convergence types and their importance in robotics.


9: MomentGenerating Function – Covers functions that summarize distribution characteristics.


10: ProbabilityGenerating Function – Introduces generating functions in probability.


11: Conditional Expectation – Examines expected values given certain known conditions.


12: Joint Probability Distribution – Describes the probability of multiple random events.


13: Lévy Distribution – Investigates this distribution and its relevance in robotics.


14: Renewal Theory – Explores theory critical to modeling repetitive events in robotics.


15: Dynkin System – Discusses this system’s role in probability structure.


16: Empirical Distribution Function – Looks at estimating distribution based on data.


17: Characteristic Function – Analyzes functions that capture distribution properties.


18: PiSystem – Reviews pisystems for constructing probability measures.


19: Probability Integral Transform – Introduces the transformation of random variables.


20: Proofs of Convergence of Random Variables – Provides proofs essential to robotics reliability.


21: Convolution of Probability Distributions – Explores combining distributions in robotics.

Про автора

Fouad Sabry is the former Regional Head of Business Development for Applications at HP. Fouad has received his B.Sc. of Computer Systems and Automatic Control in 1996, dual master’s degrees from University of Melbourne (UoM) in Australia, Master of Business Administration (MBA) in 2008, and Master of Management in Information Technology (MMIT) in 2010. Fouad has more than 30 years of experience in Information Technology and Telecommunications fields, working in local, regional, and international companies, such as Vodafone and IBM. Fouad joined HP in 2013 and helped develop the business in tens of markets. Currently, Fouad is an entrepreneur, author, futurist, and founder of One Billion Knowledge (1BK) Initiative.

Оцініть цю аудіокнигу

Повідомте нас про свої враження.

Інформація щодо прослуховування

Смартфони та планшети
Установіть додаток Google Play Книги для Android і iPad або iPhone. Він автоматично синхронізується з вашим обліковим записом і дає змогу читати книги в режимах онлайн і офлайн, де б ви не були.
Портативні та настільні комп’ютери
Придбані в Google Play книги можна читати за допомогою веб-переглядача вашого комп’ютера.

Читайте серію далі

Ще від автора Fouad Sabry

Схожі аудіокниги