Cumulative Distribution Function: A Mathematical Approach to Probabilistic Modeling in Robotics

· Robotics Science 第 31 本图书 · One Billion Knowledgeable · AI 讲述者:Maxwell(来自 Google)
有声读物
7 小时 3 分钟
完整版
符合条件
AI 讲述
评分和评价未经验证  了解详情
想要试听 30 分钟吗?随时畅听,离线也能听。 
添加

关于此有声读物

1: Cumulative Distribution Function – Introduces the CDF and its foundational role in probability.


2: Cauchy Distribution – Examines this key probability distribution and its applications.


3: Expected Value – Discusses the concept of expected outcomes in statistical processes.


4: Random Variable – Explores the role of random variables in probabilistic models.


5: Independence (Probability Theory) – Analyzes independent events and their significance.


6: Central Limit Theorem – Details this fundamental theorem’s impact on data approximation.


7: Probability Density Function – Outlines the PDF and its link to continuous distributions.


8: Convergence of Random Variables – Explains convergence types and their importance in robotics.


9: MomentGenerating Function – Covers functions that summarize distribution characteristics.


10: ProbabilityGenerating Function – Introduces generating functions in probability.


11: Conditional Expectation – Examines expected values given certain known conditions.


12: Joint Probability Distribution – Describes the probability of multiple random events.


13: Lévy Distribution – Investigates this distribution and its relevance in robotics.


14: Renewal Theory – Explores theory critical to modeling repetitive events in robotics.


15: Dynkin System – Discusses this system’s role in probability structure.


16: Empirical Distribution Function – Looks at estimating distribution based on data.


17: Characteristic Function – Analyzes functions that capture distribution properties.


18: PiSystem – Reviews pisystems for constructing probability measures.


19: Probability Integral Transform – Introduces the transformation of random variables.


20: Proofs of Convergence of Random Variables – Provides proofs essential to robotics reliability.


21: Convolution of Probability Distributions – Explores combining distributions in robotics.

作者简介

Fouad Sabry is the former Regional Head of Business Development for Applications at HP. Fouad has received his B.Sc. of Computer Systems and Automatic Control in 1996, dual master’s degrees from University of Melbourne (UoM) in Australia, Master of Business Administration (MBA) in 2008, and Master of Management in Information Technology (MMIT) in 2010. Fouad has more than 30 years of experience in Information Technology and Telecommunications fields, working in local, regional, and international companies, such as Vodafone and IBM. Fouad joined HP in 2013 and helped develop the business in tens of markets. Currently, Fouad is an entrepreneur, author, futurist, and founder of One Billion Knowledge (1BK) Initiative.

为此有声读物评分

欢迎向我们提供反馈意见。

聆听信息

智能手机和平板电脑
只要安装 AndroidiPad/iPhone 版的 Google Play 图书应用,不仅应用内容会自动与您的账号同步,还能让您随时随地在线或离线阅览图书。
笔记本电脑和台式机
您可以使用计算机上的网络浏览器阅读在 Google Play 购买的图书。

继续浏览系列丛书

Fouad Sabry的更多图书

类似的有声读物