Naive Bayes Classifier: Fundamentals and Applications

Β· Artificial Intelligence αžŸαŸ€αžœαž—αŸ…αž‘αžΈ 31 Β· One Billion Knowledgeable Β· αž”αžΆαž“αž’αžΆαž“αžŠαŸ„αž™ AI αžŠαŸ„αž™ Mason (αž–αžΈ Google)
αžŸαŸ€αžœαž—αŸ…β€‹αž‡αžΆβ€‹αžŸαŸ†αž‘αŸαž„
3 វិ 56 αž“
αž˜αž·αž“β€‹αžŸαž„αŸ’αžαŸαž”
αž˜αžΆαž“αžŸαž·αž‘αŸ’αž’αž·
αž’αžΆαž“αžŠαŸ„αž™ AI
αž€αžΆαžšαžœαžΆαž™αžαž˜αŸ’αž›αŸƒ αž“αž·αž„αž˜αžαž·αžœαžΆαž™αžαž˜αŸ’αž›αŸƒαž˜αž·αž“αžαŸ’αžšαžΌαžœαž”αžΆαž“αž•αŸ’αž‘αŸ€αž„αž•αŸ’αž‘αžΆαžαŸ‹αž‘αŸ αžŸαŸ’αžœαŸ‚αž„αž™αž›αŸ‹αž”αž“αŸ’αžαŸ‚αž˜
αž…αž„αŸ‹αž”αžΆαž“αž‚αŸ†αžšαžΌ 23 αž“αžΆαž‘αžΈ αž˜αŸ‚αž“αž‘αŸ? αžŸαŸ’αžŠαžΆαž”αŸ‹αž”αžΆαž“β€‹αž‚αŸ’αžšαž”αŸ‹αž–αŸαž› αž‘αŸ„αŸ‡αž”αžΈαž‡αžΆαž‚αŸ’αž˜αžΆαž“αž’αŸŠαžΈαž“αž’αžΊαžŽαž·αžαž€αŸαžŠαŸ„αž™αŸ”Β 
αž”αž“αŸ’αžαŸ‚αž˜

αž’αŸ†αž–αžΈαžŸαŸ€αžœαž—αŸ…β€‹αž‡αžΆαžŸαŸ†αž‘αŸαž„αž“αŸαŸ‡

What Is Naive Bayes Classifier


In the field of statistics, naive Bayes classifiers are a family of straightforward "probabilistic classifiers" that are derived from the application of Bayes' theorem with strong (naive) assumptions of independence between the features. They are among the Bayesian network models that are the simplest, but when combined with kernel density estimation, they are capable of achieving great levels of accuracy.


How You Will Benefit


(I) Insights, and validations about the following topics:


Chapter 1: Naive Bayes classifier


Chapter 2: Likelihood function


Chapter 3: Bayes' theorem


Chapter 4: Bayesian inference


Chapter 5: Multivariate normal distribution


Chapter 6: Maximum likelihood estimation


Chapter 7: Bayesian network


Chapter 8: Naive Bayes spam filtering


Chapter 9: Marginal likelihood


Chapter 10: Dirichlet distribution


(II) Answering the public top questions about naive bayes classifier.


(III) Real world examples for the usage of naive bayes classifier in many fields.


(IV) 17 appendices to explain, briefly, 266 emerging technologies in each industry to have 360-degree full understanding of naive bayes classifier' technologies.


Who This Book Is For


Professionals, undergraduate and graduate students, enthusiasts, hobbyists, and those who want to go beyond basic knowledge or information for any kind of naive bayes classifier.

αž’αŸ†αž–αžΈβ€‹αž’αŸ’αž“αž€αž“αž·αž–αž“αŸ’αž’

Fouad Sabry is the former Regional Head of Business Development for Applications at HP. Fouad has received his B.Sc. of Computer Systems and Automatic Control in 1996, dual master’s degrees from University of Melbourne (UoM) in Australia, Master of Business Administration (MBA) in 2008, and Master of Management in Information Technology (MMIT) in 2010. Fouad has more than 30 years of experience in Information Technology and Telecommunications fields, working in local, regional, and international companies, such as Vodafone and IBM. Fouad joined HP in 2013 and helped develop the business in tens of markets. Currently, Fouad is an entrepreneur, author, futurist, and founder of One Billion Knowledge (1BK) Initiative.

αžœαžΆαž™αžαž˜αŸ’αž›αŸƒβ€‹αžŸαŸ€αžœαž—αŸ…αž‡αžΆαžŸαŸ†αž‘αŸαž„αž“αŸαŸ‡

αž”αŸ’αžšαžΆαž”αŸ‹αž™αžΎαž„αž’αŸ†αž–αžΈαž€αžΆαžšαž™αž›αŸ‹αžƒαžΎαž‰αžšαž”αžŸαŸ‹αž’αŸ’αž“αž€αŸ”

αž–αŸαžαŸŒαž˜αžΆαž“αž’αŸ†αž–αžΈαž€αžΆαžšαžŸαŸ’αžŠαžΆαž”αŸ‹

αž‘αžΌαžšαžŸαž–αŸ’αž‘αž†αŸ’αž›αžΆαžαžœαŸƒ αž“αž·αž„β€‹αžαŸαž”αŸ’αž›αŸαž
αžŠαŸ†αž‘αžΎαž„αž€αž˜αŸ’αž˜αžœαž·αž’αžΈ Google Play Books αžŸαž˜αŸ’αžšαžΆαž”αŸ‹ Android αž“αž·αž„ iPad/iPhone αŸ” αžœαžΆβ€‹αž’αŸ’αžœαžΎαžŸαž˜αž€αžΆαž›αž€αž˜αŸ’αž˜β€‹αžŠαŸ„αž™αžŸαŸ’αžœαŸαž™αž”αŸ’αžšαžœαžαŸ’αžαž·αž‡αžΆαž˜αž½αž™β€‹αž‚αžŽαž“αžΈβ€‹αžšαž”αžŸαŸ‹αž’αŸ’αž“αž€β€‹ αž“αž·αž„β€‹αž’αž“αž»αž‰αŸ’αž‰αžΆαžαž±αŸ’αž™β€‹αž’αŸ’αž“αž€αž’αžΆαž“αž–αŸαž›β€‹αž˜αžΆαž“αž’αŸŠαžΈαž“αž’αžΊαžŽαž·αž αž¬αž‚αŸ’αž˜αžΆαž“β€‹αž’αŸŠαžΈαž“αž’αžΊαžŽαž·αžβ€‹αž“αŸ…αž‚αŸ’αžšαž”αŸ‹αž‘αžΈαž€αž“αŸ’αž›αŸ‚αž„αŸ”
αž€αž»αŸ†αž–αŸ’αž™αžΌαž‘αŸαžšβ€‹αž™αž½αžšαžŠαŸƒ αž“αž·αž„αž€αž»αŸ†αž–αŸ’αž™αžΌαž‘αŸαžš
αž’αŸ’αž“αž€β€‹αž’αžΆαž…β€‹αž’αžΆαž“β€‹αžŸαŸ€αžœαž—αŸ…β€‹β€‹αžŠαŸ‚αž›β€‹αž”αžΆαž“β€‹αž‘αž·αž‰β€‹β€‹αž“αŸ…β€‹αž–αŸαž›β€‹β€‹β€‹αž€αž˜αŸ’αžŸαžΆαž“αŸ’αž Google αžŠαŸ„αž™β€‹αž”αŸ’αžšαžΎβ€‹αž€αž˜αŸ’αž˜αžœαž·αž’αžΈβ€‹αžšαž»αž€αžšαž€β€‹β€‹αž”αžŽαŸ’αžŠαžΆαž‰β€‹αž€αž»αŸ†αž–αŸ’αž™αžΌαž‘αŸαžšβ€‹αžšαž”αžŸαŸ‹β€‹β€‹αž’αŸ’αž“αž€αŸ”

αž”αž“αŸ’αžαžŸαŸŠαŸαžšαžΈ

αž…αŸ’αžšαžΎαž“αž‘αŸ€αžαžŠαŸ„αž™ Fouad Sabry

αžŸαŸ€αžœαž—αŸ…β€‹αž‡αžΆβ€‹αžŸαŸ†αž‘αŸαž„β€‹αžŸαŸ’αžšαžŠαŸ€αž„β€‹αž‚αŸ’αž“αžΆ