Optimizing Large Language Models Practical Approaches and Applications of Quantization Technique

Anand Vemula ¡ MadisonāĻ AIā§° āĻĻā§āĻŦāĻžā§°āĻž āĻĒā§āĻŋ āĻļ⧁āύāĻžāχāϛ⧇ (Googleā§° āĻĒā§°āĻž)
āĻ…āĻĄāĻŋāĻ…'āĻŦ⧁āĻ•
1 āϘāĻŖā§āϟāĻž 51 āĻŽāĻŋāύāĻŋāϟ
āϏāĻŽā§āĻĒā§‚ā§°ā§āĻŖ
AIāĻ āĻŦā§°ā§āĻŖāύāĻž āϕ⧰āĻž
āĻŽā§‚āĻ˛ā§āϝāĻžāĻ‚āĻ•āύ āφ⧰⧁ āĻĒā§°ā§āϝāĻžāϞ⧋āϚāύāĻž āϏāĻ¤ā§āϝāĻžāĻĒāύ āϕ⧰āĻž āĻšā§‹ā§ąāĻž āύāĻžāχ  āĻ…āϧāĻŋāĻ• āϜāĻžāύāĻ•
āĻāϟāĻž 11 āĻŽāĻŋāύāĻŋāϟ āύāĻŽā§āύāĻž āϞāĻžāϗ⧇ āύ⧇āĻ•āĻŋ? āϝāĻŋāϕ⧋āύ⧋ āϏāĻŽā§ŸāϤ⧇ āĻļ⧁āύāĻ•, āφāύāĻ•āĻŋ āĻ…āĻĢāϞāĻžāχāύ āĻšā§ˆ āĻĨāĻžāϕ⧋āρāϤ⧇āĻ“āĨ¤Â 
āϝ⧋āĻ— āϕ⧰āĻ•

āĻāχ āĻ…āĻĄāĻŋāĻ…â€™āĻŦ⧁āĻ•āĻ–āύ⧰ āĻŦāĻŋāĻˇā§Ÿā§‡

 The book provides an in-depth understanding of quantization techniques and their impact on model efficiency, performance, and deployment.

The book starts with a foundational overview of quantization, explaining its significance in reducing the computational and memory requirements of LLMs. It delves into various quantization methods, including uniform and non-uniform quantization, per-layer and per-channel quantization, and hybrid approaches. Each technique is examined for its applicability and trade-offs, helping readers select the best method for their specific needs.

The guide further explores advanced topics such as quantization for edge devices and multi-lingual models. It contrasts dynamic and static quantization strategies and discusses emerging trends in the field. Practical examples, use cases, and case studies are provided to illustrate how these techniques are applied in real-world scenarios, including the quantization of popular models like GPT and BERT.

āϞāĻŋāĻ–āϕ⧰ āĻŦāĻŋāώāϝāĻŧ⧇

AI Evangelist with 27 years of IT experience

āĻāχ āĻ…āĻĄāĻŋāĻ…â€™āĻŦ⧁āĻ•āĻ–āύ⧰ āĻŽā§‚āĻ˛ā§āϝāĻžāĻ‚āĻ•āύ āϕ⧰āĻ•

āφāĻŽāĻžāĻ• āφāĻĒā§‹āύāĻžā§° āĻŽāϤāĻžāĻŽāϤ āϜāύāĻžāĻ“āĻ•āĨ¤

āĻ…āĻĄāĻŋāĻ…'āĻŦ⧁āĻ• āĻļ⧁āύāĻžā§° āύāĻŋāĻ°ā§āĻĻ⧇āĻļāĻžā§ąāϞ⧀

āĻ¸ā§āĻŽāĻžā§°ā§āϟāĻĢ’āύ āφ⧰⧁ āĻŸā§‡āĻŦāϞ⧇āϟ
Android āφ⧰⧁ iPad/iPhoneā§° āĻŦāĻžāĻŦ⧇ Google Play Books āĻāĻĒāĻŸā§‹ āχāύāĻˇā§āϟāϞ āϕ⧰āĻ•āĨ¤ āχ āĻ¸ā§āĻŦāϝāĻŧāĻ‚āĻ•ā§āϰāĻŋāϝāĻŧāĻ­āĻžā§ąā§‡ āφāĻĒā§‹āύāĻžā§° āĻāĻ•āĻžāωāĻŖā§āϟ⧰ āϏ⧈āϤ⧇ āĻ›āĻŋāĻ‚āĻ• āĻšāϝāĻŧ āφ⧰⧁ āφāĻĒ⧁āύāĻŋ āϝ'āϤ⧇ āύāĻžāĻĨāĻžāĻ•āĻ• āϤ'āϤ⧇āχ āϕ⧋āύ⧋ āĻ…āĻĄāĻŋāĻ…'āĻŦ⧁āĻ• āĻ…āύāϞāĻžāχāύ āĻŦāĻž āĻ…āĻĢāϞāĻžāχāύāϤ āĻļ⧁āύāĻŋāĻŦāϞ⧈ āϏ⧁āĻŦāĻŋāϧāĻž āĻĻāĻŋāϝāĻŧ⧇āĨ¤
āϞ⧇āĻĒāϟāĻĒ āφ⧰⧁ āĻ•āĻŽā§āĻĒāĻŋāωāϟāĻžā§°
āĻ•āĻŽā§āĻĒāĻŋāωāϟāĻžā§°ā§° ā§ąā§‡āĻŦ āĻŦā§āϰāĻžāωāϜāĻžā§° āĻŦā§āĻ¯ā§ąāĻšāĻžā§° āϕ⧰āĻŋ āφāĻĒ⧁āύāĻŋ Google PlayāϤ āĻ•āĻŋāύāĻž āĻ•āĻŋāϤāĻžāĻĒāϏāĻŽā§‚āĻš āĻĒāĻĸāĻŧāĻŋāĻŦ āĻĒāĻžā§°ā§‡āĨ¤

Anand Vemulaā§° āĻĻā§āĻŦāĻžā§°āĻž āφ⧰⧁ āĻ…āϧāĻŋāĻ•

āĻāϕ⧇āϧ⧰āĻŖā§° āĻ…āĻĄāĻŋāĻ…â€™āĻŦ⧁āĻ•

Madisonā§° āĻĻā§āĻŦāĻžā§°āĻž āĻŦāĻ°ā§āĻŖāĻŋāϤ