Optimizing Large Language Models Practical Approaches and Applications of Quantization Technique

Anand Vemula ¡ Madison-āĻāϰ āĻ•āĻŖā§āϠ⧇ (Google āĻĨ⧇āϕ⧇) AI-āĻ¨ā§āϝāĻžāϰ⧇āĻŸā§‡āĻĄ āĻ…āĻĄāĻŋāĻ“āĻŦ⧁āĻ•
āĻ…āĻĄāĻŋāĻ“āĻŦ⧁āĻ•
1 āϘāĻŖā§āϟāĻž 51 āĻŽāĻŋāύāĻŋāϟ
āϏāĻ‚āĻ•ā§āώāĻŋāĻĒā§āϤ āύ⧟
AI-āĻāϰ āĻŽāĻžāĻ§ā§āϝāĻŽā§‡ āĻŦāĻ°ā§āĻŖāύāĻž āĻ•āϰāĻž
āϰ⧇āϟāĻŋāĻ‚ āĻ“ āϰāĻŋāĻ­āĻŋāω āϝāĻžāϚāĻžāχ āĻ•āϰāĻž āĻšā§ŸāύāĻŋ  āφāϰāĻ“ āϜāĻžāύ⧁āύ
11 āĻŽāĻŋāύāĻŋāϟ āϏāĻŽā§Ÿā§‡āϰ āύāĻŽā§āύāĻž āĻĒ⧇āϤ⧇ āϚāĻžāύ? āϝ⧇āϕ⧋āύāĻ“ āϏāĻŽā§Ÿ āĻļ⧁āύ⧁āύ, āĻāĻŽāύāĻ•āĻŋ āĻ…āĻĢāϞāĻžāχāύ⧇ āĻĨāĻžāĻ•āϞ⧇āĻ“āĨ¤Â 
āϜ⧁⧜⧁āύ

āĻāχ āĻ…āĻĄāĻŋāĻ“āĻŦ⧁āϕ⧇āϰ āĻŦāĻŋāĻˇā§Ÿā§‡

 The book provides an in-depth understanding of quantization techniques and their impact on model efficiency, performance, and deployment.

The book starts with a foundational overview of quantization, explaining its significance in reducing the computational and memory requirements of LLMs. It delves into various quantization methods, including uniform and non-uniform quantization, per-layer and per-channel quantization, and hybrid approaches. Each technique is examined for its applicability and trade-offs, helping readers select the best method for their specific needs.

The guide further explores advanced topics such as quantization for edge devices and multi-lingual models. It contrasts dynamic and static quantization strategies and discusses emerging trends in the field. Practical examples, use cases, and case studies are provided to illustrate how these techniques are applied in real-world scenarios, including the quantization of popular models like GPT and BERT.

āϞ⧇āĻ–āĻ• āϏāĻŽā§āĻĒāĻ°ā§āϕ⧇

AI Evangelist with 27 years of IT experience

āĻāχ āĻ…āĻĄāĻŋāĻ“āĻŦ⧁āϕ⧇āϰ āϰ⧇āϟāĻŋāĻ‚ āĻĻāĻŋāύ

āφāĻĒāύāĻžāϰ āĻŽāϤāĻžāĻŽāϤ āϜāĻžāύāĻžāύāĨ¤

āϕ⧀āĻ­āĻžāĻŦ⧇ āĻļ⧁āύāĻŦ⧇āύ

āĻ¸ā§āĻŽāĻžāĻ°ā§āϟāĻĢā§‹āύ āĻāĻŦāĻ‚ āĻŸā§āϝāĻžāĻŦāϞ⧇āϟ
Android āĻāĻŦāĻ‚ iPad/iPhone āĻāϰ āϜāĻ¨ā§āϝ Google Play āĻŦāχ āĻ…ā§āϝāĻžāĻĒ āχāύāĻ¸ā§āϟāϞ āĻ•āϰ⧁āύāĨ¤ āĻāϟāĻŋ āφāĻĒāύāĻžāϰ āĻ…ā§āϝāĻžāĻ•āĻžāωāĻ¨ā§āĻŸā§‡āϰ āϏāĻžāĻĨ⧇ āĻ…āĻŸā§‹āĻŽā§‡āϟāĻŋāĻ• āϏāĻŋāĻ™ā§āĻ• āĻšā§Ÿ āĻ“ āφāĻĒāύāĻŋ āĻ…āύāϞāĻžāχāύ āĻŦāĻž āĻ…āĻĢāϞāĻžāχāύ āϝāĻžāχ āĻĨāĻžāϕ⧁āύ āύāĻž āϕ⧇āύ āφāĻĒāύāĻžāϕ⧇ āĻĒ⧜āϤ⧇ āĻĻā§‡ā§ŸāĨ¤
āĻ˛ā§āϝāĻžāĻĒāϟāĻĒ āĻ“ āĻ•āĻŽā§āĻĒāĻŋāωāϟāĻžāϰ
āφāĻĒāύāĻŋ āφāĻĒāύāĻžāϰ āĻ•āĻŽā§āĻĒāĻŋāωāϟāĻžāϰ⧇āϰ āĻ“ā§Ÿā§‡āĻŦ āĻŦā§āϰāĻžāωāϜāĻžāϰ⧇āϰ āĻŦā§āϝāĻŦāĻšāĻžāϰ āĻ•āϰ⧇ Google Play āϤ⧇ āϕ⧇āύāĻž āĻŦāχāϗ⧁āϞāĻŋ āĻĒ⧜āϤ⧇ āĻĒāĻžāϰ⧇āύāĨ¤

Anand Vemula āĻāϰ āĻĨ⧇āϕ⧇ āφāϰ⧋

āĻāχ āϧāϰāϪ⧇āϰ āφāϰāĻ“ āĻ…āĻĄāĻŋāĻ“āĻŦ⧁āĻ•

Madison-āĻāϰ āĻŦāϞāĻž