Quantum Computing

¡ IntroBooks ¡ Andrea Giordaniā§° āĻĻā§āĻŦāĻžā§°āĻž āĻŦāĻ°ā§āĻŖāĻŋāϤ
ā§Ģ.ā§Ļ
ā§§ āϟāĻž āĻĒā§°ā§āϝāĻžāϞ⧋āϚāύāĻž
āĻ…āĻĄāĻŋāĻ…'āĻŦ⧁āĻ•
33 āĻŽāĻŋāύāĻŋāϟ
āϏāĻŽā§āĻĒā§‚ā§°ā§āĻŖ
āϝ⧋āĻ—ā§āϝ
āĻŽā§‚āĻ˛ā§āϝāĻžāĻ‚āĻ•āύ āφ⧰⧁ āĻĒā§°ā§āϝāĻžāϞ⧋āϚāύāĻž āϏāĻ¤ā§āϝāĻžāĻĒāύ āϕ⧰āĻž āĻšā§‹ā§ąāĻž āύāĻžāχ  āĻ…āϧāĻŋāĻ• āϜāĻžāύāĻ•
āĻāϟāĻž 5 āĻŽāĻŋāύāĻŋāϟ āύāĻŽā§āύāĻž āϞāĻžāϗ⧇ āύ⧇āĻ•āĻŋ? āϝāĻŋāϕ⧋āύ⧋ āϏāĻŽā§ŸāϤ⧇ āĻļ⧁āύāĻ•, āφāύāĻ•āĻŋ āĻ…āĻĢāϞāĻžāχāύ āĻšā§ˆ āĻĨāĻžāϕ⧋āρāϤ⧇āĻ“āĨ¤Â 
āϝ⧋āĻ— āϕ⧰āĻ•

āĻāχ āĻ…āĻĄāĻŋāĻ…â€™āĻŦ⧁āĻ•āĻ–āύ⧰ āĻŦāĻŋāĻˇā§Ÿā§‡

In recent years it computing developed with great speed. According to scientist Gordon Earl Moore, the number of transistors on a processor would double every 24 months or so. Transistors are the fundamental elements for a processor to perform calculations. Therefore, this prediction known as Moore's Law means that the processing power of a computer would double every two years.

Regularly see companies like Intel and AMD launch ever faster processors. For this, it is necessary to manipulate portions of the increasingly smaller area. But there is a limit to this. When transistors are beginning to be made with only a few molecules, it is difficult to reduce its size further and thus increase the capacity of our electronics.

Therefore, quantum computing is the science that studies the use of quantum mechanics to perform computational processing.

āĻŽā§‚āĻ˛ā§āϝāĻžāĻ‚āĻ•āύ āφ⧰⧁ āĻĒā§°ā§āϝāĻžāϞ⧋āϚāύāĻžāϏāĻŽā§‚āĻš

ā§Ģ.ā§Ļ
ā§§ āϟāĻž āĻĒā§°ā§āϝāĻžāϞ⧋āϚāύāĻž

āĻāχ āĻ…āĻĄāĻŋāĻ…â€™āĻŦ⧁āĻ•āĻ–āύ⧰ āĻŽā§‚āĻ˛ā§āϝāĻžāĻ‚āĻ•āύ āϕ⧰āĻ•

āφāĻŽāĻžāĻ• āφāĻĒā§‹āύāĻžā§° āĻŽāϤāĻžāĻŽāϤ āϜāύāĻžāĻ“āĻ•āĨ¤

āĻ…āĻĄāĻŋāĻ…'āĻŦ⧁āĻ• āĻļ⧁āύāĻžā§° āύāĻŋāĻ°ā§āĻĻ⧇āĻļāĻžā§ąāϞ⧀

āĻ¸ā§āĻŽāĻžā§°ā§āϟāĻĢ’āύ āφ⧰⧁ āĻŸā§‡āĻŦāϞ⧇āϟ
Android āφ⧰⧁ iPad/iPhoneā§° āĻŦāĻžāĻŦ⧇ Google Play Books āĻāĻĒāĻŸā§‹ āχāύāĻˇā§āϟāϞ āϕ⧰āĻ•āĨ¤ āχ āĻ¸ā§āĻŦāϝāĻŧāĻ‚āĻ•ā§āϰāĻŋāϝāĻŧāĻ­āĻžā§ąā§‡ āφāĻĒā§‹āύāĻžā§° āĻāĻ•āĻžāωāĻŖā§āϟ⧰ āϏ⧈āϤ⧇ āĻ›āĻŋāĻ‚āĻ• āĻšāϝāĻŧ āφ⧰⧁ āφāĻĒ⧁āύāĻŋ āϝ'āϤ⧇ āύāĻžāĻĨāĻžāĻ•āĻ• āϤ'āϤ⧇āχ āϕ⧋āύ⧋ āĻ…āĻĄāĻŋāĻ…'āĻŦ⧁āĻ• āĻ…āύāϞāĻžāχāύ āĻŦāĻž āĻ…āĻĢāϞāĻžāχāύāϤ āĻļ⧁āύāĻŋāĻŦāϞ⧈ āϏ⧁āĻŦāĻŋāϧāĻž āĻĻāĻŋāϝāĻŧ⧇āĨ¤
āϞ⧇āĻĒāϟāĻĒ āφ⧰⧁ āĻ•āĻŽā§āĻĒāĻŋāωāϟāĻžā§°
āĻ•āĻŽā§āĻĒāĻŋāωāϟāĻžā§°ā§° ā§ąā§‡āĻŦ āĻŦā§āϰāĻžāωāϜāĻžā§° āĻŦā§āĻ¯ā§ąāĻšāĻžā§° āϕ⧰āĻŋ āφāĻĒ⧁āύāĻŋ Google PlayāϤ āĻ•āĻŋāύāĻž āĻ•āĻŋāϤāĻžāĻĒāϏāĻŽā§‚āĻš āĻĒāĻĸāĻŧāĻŋāĻŦ āĻĒāĻžā§°ā§‡āĨ¤

Introbooks Teamā§° āĻĻā§āĻŦāĻžā§°āĻž āφ⧰⧁ āĻ…āϧāĻŋāĻ•

āĻāϕ⧇āϧ⧰āĻŖā§° āĻ…āĻĄāĻŋāĻ…â€™āĻŦ⧁āĻ•

Andrea Giordaniā§° āĻĻā§āĻŦāĻžā§°āĻž āĻŦāĻ°ā§āĻŖāĻŋāϤ