The volume can be divided into four sections. Part I provides a review of the required distribution theory. Part II introduces the problem of statistical inference. This includes the definitions of the exponential family, invariant and Bayesian models. Basic concepts of estimation, confidence intervals and hypothesis testing are introduced here. Part III constitutes the core of the volume, presenting a formal theory of statistical inference. Beginning with decision theory, this section then covers uniformly minimum variance unbiased (UMVU) estimation, minimum risk equivariant (MRE) estimation and the Neyman-Pearson test. Finally, Part IV introduces large sample theory. This section begins with stochastic limit theorems, the δ-method, the Bahadur representation theorem for sample quantiles, large sample U-estimation, the Cramér-Rao lower bound and asymptotic efficiency. A separate chapter is then devoted to estimating equation methods. The volume ends with a detailed development of large sample hypothesis testing, based on the likelihood ratio test (LRT), Rao score test and the Wald test.
Features
Anthony Almudevar is an Associate Professor of Biostatistics and Computational Biology at the University of Rochester. His research interests include statistical methodology, graphical models, bioinformatics, optimization and control theory. Other published volumes include Almudevar A (2014) Approximate Iterative Algorithms, CRC Press, and Statistical Modeling for Biological Systems: In Memory of Andrei Yakovlev, Anthony Almudevar, David Oakes and Jack Hall, editors (2020), Springer.