Applied Probability: Edition 2

Β· Springer Science & Business Media
Π•-књига
436
Π‘Ρ‚Ρ€Π°Π½ΠΈΡ†Π°
ΠžΡ†Π΅Π½Π΅ ΠΈ Ρ€Π΅Ρ†Π΅Π½Π·ΠΈΡ˜Π΅ нису Π²Π΅Ρ€ΠΈΡ„ΠΈΠΊΠΎΠ²Π°Π½Π΅ Β Π‘Π°Π·Π½Π°Ρ˜Ρ‚Π΅ вишС

О овој С-књизи

Applied Probability presents a unique blend of theory and applications, with special emphasis on mathematical modeling, computational techniques, and examples from the biological sciences. It can serve as a textbook for graduate students in applied mathematics, biostatistics, computational biology, computer science, physics, and statistics. Readers should have a working knowledge of multivariate calculus, linear algebra, ordinary differential equations, and elementary probability theory.
Chapter 1 reviews elementary probability and provides a brief survey of relevant results from measure theory. Chapter 2 is an extended essay on calculating expectations. Chapter 3 deals with probabilistic applications of convexity, inequalities, and optimization theory. Chapters 4 and 5 touch on combinatorics and combinatorial optimization. Chapters 6 through 11 present core material on stochastic processes. If supplemented with appropriate sections from Chapters 1 and 2, there is sufficient material for a traditional semester-long course in stochastic processes covering the basics of Poisson processes, Markov chains, branching processes, martingales, and diffusion processes. The second edition adds two new chapters on asymptotic and numerical methods and an appendix that separates some of the more delicate mathematical theory from the steady flow of examples in the main text.
Besides the two new chapters, the second edition includes a more extensive list of exercises, many additions to the exposition of combinatorics, new material on rates of convergence to equilibrium in reversible Markov chains, a discussion of basic reproduction numbers in population modeling, and better coverage of Brownian motion. Because many chapters are nearly self-contained, mathematical scientists from a variety of backgrounds will find Applied Probability useful as a reference

О Π°ΡƒΡ‚ΠΎΡ€Ρƒ

Kenneth Lange is the Rosenfeld Professor of Computational Genetics in the Departments of Biomathematics and Human Genetics at the UCLA School of Medicine and the Chair of the Department of Human Genetics. His research interests include human genetics, population modeling, biomedical imaging, computational statistics, high-dimensional optimization, and applied stochastic processes. Springer previously published his books Mathematical and Statistical Methods for Genetic Analysis, 2nd ed., Numerical Analysis for Statisticians, 2nd ed., and Optimization. He has written over 200 research papers and produced with his UCLA colleague Eric Sobel the computer program Mendel, widely used in statistical genetics.

ΠžΡ†Π΅Π½ΠΈΡ‚Π΅ ΠΎΠ²Ρƒ Π΅-ΠΊΡšΠΈΠ³Ρƒ

ΠˆΠ°Π²ΠΈΡ‚Π΅ Π½Π°ΠΌ својС ΠΌΠΈΡˆΡ™Π΅ΡšΠ΅.

Π˜Π½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΡ˜Π΅ ΠΎ Ρ‡ΠΈΡ‚Π°ΡšΡƒ

ΠŸΠ°ΠΌΠ΅Ρ‚Π½ΠΈ Ρ‚Π΅Π»Π΅Ρ„ΠΎΠ½ΠΈ ΠΈ Ρ‚Π°Π±Π»Π΅Ρ‚ΠΈ
Π˜Π½ΡΡ‚Π°Π»ΠΈΡ€Π°Ρ˜Ρ‚Π΅ Π°ΠΏΠ»ΠΈΠΊΠ°Ρ†ΠΈΡ˜Ρƒ Google Play књигС Π·Π° Android ΠΈ iPad/iPhone. Аутоматски сС ΡΠΈΠ½Ρ…Ρ€ΠΎΠ½ΠΈΠ·ΡƒΡ˜Π΅ са Π½Π°Π»ΠΎΠ³ΠΎΠΌ ΠΈ ΠΎΠΌΠΎΠ³ΡƒΡ›Π°Π²Π° Π²Π°ΠΌ Π΄Π° Ρ‡ΠΈΡ‚Π°Ρ‚Π΅ онлајн ΠΈ ΠΎΡ„Π»Π°Ρ˜Π½ Π³Π΄Π΅ Π³ΠΎΠ΄ Π΄Π° сС Π½Π°Π»Π°Π·ΠΈΡ‚Π΅.
Π›Π°ΠΏΡ‚ΠΎΠΏΠΎΠ²ΠΈ ΠΈ Ρ€Π°Ρ‡ΡƒΠ½Π°Ρ€ΠΈ
ΠœΠΎΠΆΠ΅Ρ‚Π΅ Π΄Π° ΡΠ»ΡƒΡˆΠ°Ρ‚Π΅ Π°ΡƒΠ΄ΠΈΠΎ-књигС ΠΊΡƒΠΏΡ™Π΅Π½Π΅ Π½Π° Google Play-Ρƒ ΠΏΠΎΠΌΠΎΡ›Ρƒ Π²Π΅Π±-ΠΏΡ€Π΅Π³Π»Π΅Π΄Π°Ρ‡Π° Π½Π° Ρ€Π°Ρ‡ΡƒΠ½Π°Ρ€Ρƒ.
Π•-Ρ‡ΠΈΡ‚Π°Ρ‡ΠΈ ΠΈ Π΄Ρ€ΡƒΠ³ΠΈ ΡƒΡ€Π΅Ρ’Π°Ρ˜ΠΈ
Π”Π° бистС Ρ‡ΠΈΡ‚Π°Π»ΠΈ Π½Π° ΡƒΡ€Π΅Ρ’Π°Ρ˜ΠΈΠΌΠ° којС користС Π΅-мастило, ΠΊΠ°ΠΎ ΡˆΡ‚ΠΎ су Kobo Π΅-Ρ‡ΠΈΡ‚Π°Ρ‡ΠΈ, Ρ‚Ρ€Π΅Π±Π° Π΄Π° ΠΏΡ€Π΅ΡƒΠ·ΠΌΠ΅Ρ‚Π΅ Ρ„Π°Ρ˜Π» ΠΈ прСнСсСтС Π³Π° Π½Π° ΡƒΡ€Π΅Ρ’Π°Ρ˜. ΠŸΡ€Π°Ρ‚ΠΈΡ‚Π΅ Π΄Π΅Ρ‚Π°Ρ™Π½Π° упутства ΠΈΠ· Ρ†Π΅Π½Ρ‚Ρ€Π° Π·Π° ΠΏΠΎΠΌΠΎΡ› Π΄Π° бистС ΠΏΡ€Π΅Π½Π΅Π»ΠΈ Ρ„Π°Ρ˜Π»ΠΎΠ²Π΅ Ρƒ ΠΏΠΎΠ΄Ρ€ΠΆΠ°Π½Π΅ Π΅-Ρ‡ΠΈΡ‚Π°Ρ‡Π΅.