Applied Probability: Edition 3

ยท Springer Nature
เช‡-เชชเซเชธเซเชคเช•
602
เชชเซ‡เชœ
เชฐเซ‡เชŸเชฟเช‚เช— เช…เชจเซ‡ เชฐเชฟเชตเซเชฏเซ‚ เชšเช•เชพเชธเซ‡เชฒเชพ เชจเชฅเซ€ย เชตเชงเซ เชœเชพเชฃเซ‹

เช† เช‡-เชชเซเชธเซเชคเช• เชตเชฟเชถเซ‡

Applied Probability presents a unique blend of theory and applications, with special emphasis on mathematical modeling, computational techniques, and examples from the biological sciences. Chapter 1 reviews elementary probability and provides a brief survey of relevant results from measure theory. Chapter 2 is an extended essay on calculating expectations. Chapter 3 deals with probabilistic applications of convexity, inequalities, and optimization theory. Chapters 4 and 5 touch on combinatorics and combinatorial optimization. Chapters 6 through 11 present core material on stochastic processes.

If supplemented with appropriate sections from Chapters 1 and 2, there is sufficient material for a traditional semester-long course in stochastic processes covering the basics of Poisson processes, Markov chains, branching processes, martingales, and diffusion processes. This third edition includes new topics and many worked exercises. The new chapter on entropy stresses Shannon entropy and its mathematical applications. New sections in existing chapters explain the Chinese restaurant problem, the infinite alleles model, saddlepoint approximations, and recurrence relations. The extensive list of new problems pursues topics such as random graph theory omitted in the previous editions. Computational probability receives even greater emphasis than earlier. Some of the solved problems are coding exercises, and Julia code is provided.

Mathematical scientists from a variety of backgrounds will find Applied Probability appealing as a reference. This updated edition can serve as a textbook for graduate students in applied mathematics, biostatistics, computational biology, computer science, physics, and statistics. Readers should have a working knowledge of multivariate calculus, linear algebra, ordinary differential equations, and elementary probability theory.

เชฒเซ‡เช–เช• เชตเชฟเชถเซ‡

Kenneth Lange is the Rosenfeld Professor of Computational Genetics in the Departments of Computational Medicine, Human Genetics, and Statistics at the University of California, Los Angeles. He served as chair of the UCLA Department of Computational Medicine for 9 years and as chair of the UCLA Department of Human Genetics for 12 years. He has authored five other books, including Mathematical and Statistical Methods for Genetic Analysis (Springer, 2002), Numerical Analysis for Statisticians (Springer, 2010) and Optimization (Springer, 2013). In 2021 he was elected to the National Academy of Sciences.

เช† เช‡-เชชเซเชธเซเชคเช•เชจเซ‡ เชฐเซ‡เชŸเชฟเช‚เช— เช†เชชเซ‹

เชคเชฎเซ‡ เชถเซเช‚ เชตเชฟเชšเชพเชฐเซ‹ เช›เซ‹ เช…เชฎเชจเซ‡ เชœเชฃเชพเชตเซ‹.

เชฎเชพเชนเชฟเชคเซ€ เชตเชพเช‚เชšเชตเซ€

เชธเซเชฎเชพเชฐเซเชŸเชซเซ‹เชจ เช…เชจเซ‡ เชŸเซ…เชฌเซเชฒเซ‡เชŸ
Android เช…เชจเซ‡ iPad/iPhone เชฎเชพเชŸเซ‡ Google Play Books เชเชช เช‡เชจเซเชธเซเชŸเซ‰เชฒ เช•เชฐเซ‹. เชคเซ‡ เชคเชฎเชพเชฐเชพ เชเช•เชพเช‰เชจเซเชŸ เชธเชพเชฅเซ‡ เช‘เชŸเซ‹เชฎเซ…เชŸเชฟเช• เชฐเซ€เชคเซ‡ เชธเชฟเช‚เช• เชฅเชพเชฏ เช›เซ‡ เช…เชจเซ‡ เชคเชฎเชจเซ‡ เชœเซเชฏเชพเช‚ เชชเชฃ เชนเซ‹ เชคเซเชฏเชพเช‚ เชคเชฎเชจเซ‡ เช‘เชจเชฒเชพเช‡เชจ เช…เชฅเชตเชพ เช‘เชซเชฒเชพเช‡เชจ เชตเชพเช‚เชšเชตเชพเชจเซ€ เชฎเช‚เชœเซ‚เชฐเซ€ เช†เชชเซ‡ เช›เซ‡.
เชฒเซ…เชชเชŸเซ‰เชช เช…เชจเซ‡ เช•เชฎเซเชชเซเชฏเซเชŸเชฐ
Google Play เชชเชฐ เช–เชฐเซ€เชฆเซ‡เชฒ เช‘เชกเชฟเช“เชฌเซเช•เชจเซ‡ เชคเชฎเซ‡ เชคเชฎเชพเชฐเชพ เช•เชฎเซเชชเซเชฏเซเชŸเชฐเชจเชพ เชตเซ‡เชฌ เชฌเซเชฐเชพเช‰เชเชฐเชจเซ‹ เช‰เชชเชฏเซ‹เช— เช•เชฐเซ€เชจเซ‡ เชธเชพเช‚เชญเชณเซ€ เชถเช•เซ‹ เช›เซ‹.
eReaders เช…เชจเซ‡ เช…เชจเซเชฏ เชกเชฟเชตเชพเช‡เชธ
Kobo เช‡-เชฐเซ€เชกเชฐ เชœเซ‡เชตเชพ เช‡-เช‡เช‚เช• เชกเชฟเชตเชพเช‡เชธ เชชเชฐ เชตเชพเช‚เชšเชตเชพ เชฎเชพเชŸเซ‡, เชคเชฎเชพเชฐเซ‡ เชซเชพเช‡เชฒเชจเซ‡ เชกเชพเช‰เชจเชฒเซ‹เชก เช•เชฐเซ€เชจเซ‡ เชคเชฎเชพเชฐเชพ เชกเชฟเชตเชพเช‡เชธ เชชเชฐ เชŸเซเชฐเชพเชจเซเชธเชซเชฐ เช•เชฐเชตเชพเชจเซ€ เชœเชฐเซ‚เชฐ เชชเชกเชถเซ‡. เชธเชชเซ‹เชฐเซเชŸเซ‡เชก เช‡-เชฐเซ€เชกเชฐ เชชเชฐ เชซเชพเช‡เชฒเซ‹ เชŸเซเชฐเชพเชจเซเชธเซเชซเชฐ เช•เชฐเชตเชพ เชฎเชพเชŸเซ‡ เชธเชนเชพเชฏเชคเชพ เช•เซ‡เชจเซเชฆเซเชฐเชจเซ€ เชตเชฟเช—เชคเชตเชพเชฐ เชธเซ‚เชšเชจเชพเช“ เช…เชจเซเชธเชฐเซ‹.