Cerium Oxide Nanoparticles and Gadolinium Integration: Synthesis, Characterization and Biomedical Applications

· LinkÃķping Studies in Science and Technology. Dissertations āļŦāļ™āļąāļ‡āļŠāļ·āļ­āđ€āļĨāđˆāļĄāļ—āļĩāđˆ 1 · LinkÃķping University Electronic Press
5.0
1 āļĢāļĩāļ§āļīāļ§
eBook
48
āļŦāļ™āđ‰āļē
āļ„āļ°āđāļ™āļ™āđāļĨāļ°āļĢāļĩāļ§āļīāļ§āđ„āļĄāđˆāđ„āļ”āđ‰āļĢāļąāļšāļāļēāļĢāļ•āļĢāļ§āļˆāļŠāļ­āļšāļĒāļ·āļ™āļĒāļąāļ™ Â āļ”āļđāļ‚āđ‰āļ­āļĄāļđāļĨāđ€āļžāļīāđˆāļĄāđ€āļ•āļīāļĄ

āđ€āļāļĩāđˆāļĒāļ§āļāļąāļš eBook āđ€āļĨāđˆāļĄāļ™āļĩāđ‰

A challenging task, in the area of magnetic resonance imaging is to develop contrast enhancers with built-in antioxidant properties. Oxidative stress is considered to be involved in the onset and progression of several serious conditions such as Alzheimer’s and Parkinson’s disease, and the possibility to use cerium-contained nanoparticles to modulate such inflammatory response has gained a lot of interest lately. The rare earth element gadolinium is, due to its seven unpaired f-electrons and high symmetry of the electronic state, a powerful element for contrast enhancement in magnetic resonance imaging. Chelates based on gadolinium are the most commonly used contrast agents worldwide. When introducing external contrast agents there is always a risk that it may trigger inflammatory responses, why there is an urgent need for new, tailor-made contrast agents.

Small sized cerium oxide nanoparticles have electronic structures that allows coexistence of oxidation states 3+ and 4+ of cerium, which correlates to applicable redox reactions in biomedicine. Such cerium oxide nanoparticles have recently shown to exhibit antioxidant properties both in vitro and in vivo, via the mechanisms involving enzyme mimicking activity.

This PhD project is a comprehensive investigation of cerium oxide nanoparticles as scaffold materials for gadolinium integration. Gadolinium is well adopted into the crystal structure of cerium oxide, enabling the combination of diagnostic and therapeutic properties into a single nanoparticle. The main focus of this thesis project is to design cerium oxide nanoparticles with gadolinium integration. A stepwise approach was employed as follows: 1) synthesis with controlled integration of gadolinium, 2) material characterization by means of composition crystal structure, size, and size distribution and 3) surface modification for stabilization. The obtained nanoparticles exhibit remarkable antioxidant capability in vitro and in vivo. They deliver strongly enhanced contrast per gadolinium in magnetic resonance imaging, compared to commercially available contrast agents.

A soft shell of dextran is introduced to encapsulate the cerium oxide nanoparticles with integrated gadolinium, which protects and stabilizes the hard core and to increases their biocompatibility. The dextran-coating is clearly shown to reduce formation of a protein corona and it improves the dispersibility of the nanoparticles in cell media. Functionalization strategies are currently being studied to endow these nanoparticles with specific tags for targeting purposes. This will enable guidance of the nanoparticles to a specific tissue, for high local magnetic resonance contrast complemented with properties for on-site reduced inflammation.

In conclusion, our cerium oxide nanoparticles with integrated gadolinium, exhibit combined therapeutic and diagnostic, i.e. theragnostic capabilities. This type of nanomaterial is highly promising for applications in the field of biomedical imaging.

āļāļēāļĢāđƒāļŦāđ‰āļ„āļ°āđāļ™āļ™āđāļĨāļ°āļĢāļĩāļ§āļīāļ§

5.0
1 āļĢāļĩāļ§āļīāļ§

āđƒāļŦāđ‰āļ„āļ°āđāļ™āļ™ eBook āļ™āļĩāđ‰

āđāļŠāļ”āļ‡āļ„āļ§āļēāļĄāđ€āļŦāđ‡āļ™āļ‚āļ­āļ‡āļ„āļļāļ“āđƒāļŦāđ‰āđ€āļĢāļēāļĢāļąāļšāļĢāļđāđ‰

āļ‚āđ‰āļ­āļĄāļđāļĨāđƒāļ™āļāļēāļĢāļ­āđˆāļēāļ™

āļŠāļĄāļēāļĢāđŒāļ—āđ‚āļŸāļ™āđāļĨāļ°āđāļ—āđ‡āļšāđ€āļĨāđ‡āļ•
āļ•āļīāļ”āļ•āļąāđ‰āļ‡āđāļ­āļ› Google Play Books āļŠāļģāļŦāļĢāļąāļš Android āđāļĨāļ° iPad/iPhone āđāļ­āļ›āļˆāļ°āļ‹āļīāļ‡āļ„āđŒāđ‚āļ”āļĒāļ­āļąāļ•āđ‚āļ™āļĄāļąāļ•āļīāļāļąāļšāļšāļąāļāļŠāļĩāļ‚āļ­āļ‡āļ„āļļāļ“ āđāļĨāļ°āļŠāđˆāļ§āļĒāđƒāļŦāđ‰āļ„āļļāļ“āļ­āđˆāļēāļ™āđāļšāļšāļ­āļ­āļ™āđ„āļĨāļ™āđŒāļŦāļĢāļ·āļ­āļ­āļ­āļŸāđ„āļĨāļ™āđŒāđ„āļ”āđ‰āļ—āļļāļāļ—āļĩāđˆ
āđāļĨāđ‡āļ›āļ—āđ‡āļ­āļ›āđāļĨāļ°āļ„āļ­āļĄāļžāļīāļ§āđ€āļ•āļ­āļĢāđŒ
āļ„āļļāļ“āļŸāļąāļ‡āļŦāļ™āļąāļ‡āļŠāļ·āļ­āđ€āļŠāļĩāļĒāļ‡āļ—āļĩāđˆāļ‹āļ·āđ‰āļ­āļˆāļēāļ Google Play āđ‚āļ”āļĒāđƒāļŠāđ‰āđ€āļ§āđ‡āļšāđ€āļšāļĢāļēāļ§āđŒāđ€āļ‹āļ­āļĢāđŒāđƒāļ™āļ„āļ­āļĄāļžāļīāļ§āđ€āļ•āļ­āļĢāđŒāđ„āļ”āđ‰
eReader āđāļĨāļ°āļ­āļļāļ›āļāļĢāļ“āđŒāļ­āļ·āđˆāļ™āđ†
āļŦāļēāļāļ•āđ‰āļ­āļ‡āļāļēāļĢāļ­āđˆāļēāļ™āļšāļ™āļ­āļļāļ›āļāļĢāļ“āđŒ e-ink āđ€āļŠāđˆāļ™ Kobo eReader āļ„āļļāļ“āļˆāļ°āļ•āđ‰āļ­āļ‡āļ”āļēāļ§āļ™āđŒāđ‚āļŦāļĨāļ”āđāļĨāļ°āđ‚āļ­āļ™āđ„āļŸāļĨāđŒāđ„āļ›āļĒāļąāļ‡āļ­āļļāļ›āļāļĢāļ“āđŒāļ‚āļ­āļ‡āļ„āļļāļ“ āđ‚āļ›āļĢāļ”āļ—āļģāļ•āļēāļĄāļ§āļīāļ˜āļĩāļāļēāļĢāļ­āļĒāđˆāļēāļ‡āļĨāļ°āđ€āļ­āļĩāļĒāļ”āđƒāļ™āļĻāļđāļ™āļĒāđŒāļŠāđˆāļ§āļĒāđ€āļŦāļĨāļ·āļ­āđ€āļžāļ·āđˆāļ­āđ‚āļ­āļ™āđ„āļŸāļĨāđŒāđ„āļ›āļĒāļąāļ‡ eReader āļ—āļĩāđˆāļĢāļ­āļ‡āļĢāļąāļš

āļ­āđˆāļēāļ™āļ‹āļĩāļĢāļĩāļŠāđŒāļ™āļĩāđ‰āļ•āđˆāļ­

eBook āļ—āļĩāđˆāļ„āļĨāđ‰āļēāļĒāļāļąāļ™