Data Mining: Know It All

ยท ยท ยท ยท ยท ยท ยท ยท ยท ยท ยท ยท ยท ยท
ยท Morgan Kaufmann
5.0
เด’เดฐเต เด…เดตเดฒเต‹เด•เดจเด‚
เด‡-เดฌเตเด•เตเด•เต
480
เดชเต‡เดœเตเด•เตพ
เดฏเต‹เด—เตเดฏเดคเดฏเตเดฃเตเดŸเต
เดฑเต‡เดฑเตเดฑเดฟเด‚เด—เตเด•เดณเตเด‚ เดฑเดฟเดตเตเดฏเต‚เด•เดณเตเด‚ เดชเดฐเดฟเดถเต‹เดงเดฟเดšเตเดšเตเดฑเดชเตเดชเดฟเดšเตเดšเดคเดฒเตเดฒ ย เด•เต‚เดŸเตเดคเดฒเดฑเดฟเดฏเตเด•

เดˆ เด‡-เดฌเตเด•เตเด•เดฟเดจเต†เด•เตเด•เตเดฑเดฟเดšเตเดšเต

This book brings all of the elements of data mining together in a single volume, saving the reader the time and expense of making multiple purchases. It consolidates both introductory and advanced topics, thereby covering the gamut of data mining and machine learning tactics ? from data integration and pre-processing, to fundamental algorithms, to optimization techniques and web mining methodology. The proposed book expertly combines the finest data mining material from the Morgan Kaufmann portfolio. Individual chapters are derived from a select group of MK books authored by the best and brightest in the field. These chapters are combined into one comprehensive volume in a way that allows it to be used as a reference work for those interested in new and developing aspects of data mining. This book represents a quick and efficient way to unite valuable content from leading data mining experts, thereby creating a definitive, one-stop-shopping opportunity for customers to receive the information they would otherwise need to round up from separate sources. - Chapters contributed by various recognized experts in the field let the reader remain up to date and fully informed from multiple viewpoints. - Presents multiple methods of analysis and algorithmic problem-solving techniques, enhancing the reader's technical expertise and ability to implement practical solutions. - Coverage of both theory and practice brings all of the elements of data mining together in a single volume, saving the reader the time and expense of making multiple purchases.

เดฑเต‡เดฑเตเดฑเดฟเด‚เด—เตเด•เดณเตเด‚ เดฑเดฟเดตเตเดฏเต‚เด•เดณเตเด‚

5.0
เด’เดฐเต เด…เดตเดฒเต‹เด•เดจเด‚

เดฐเดšเดฏเดฟเดคเดพเดตเดฟเดจเต† เด•เตเดฑเดฟเดšเตเดšเต

Soumen Chakrabarti is assistant Professor in Computer Science and Engineering at the Indian Institute of Technology, Bombay. Prior to joining IIT, he worked on hypertext databases and data mining at IBM Almaden Research Center. He has developed three systems and holds five patents in this area. Chakrabarti has served as a vice-chair and program committee member for many conferences, including WWW, SIGIR, ICDE, and KDD, and as a guest editor of the IEEE TKDE special issue on mining and searching the Web. His work on focused crawling received the Best Paper award at the 8th International World Wide Web Conference (1999). He holds a Ph.D. from the University of California, Berkeley.Richard E. Neapolitan is professor and Chair of Computer Science at Northeastern Illinois University. He has previously written four books including the seminal 1990 Bayesian network text Probabilistic Reasoning in Expert Systems. More recently, he wrote the 2004 text Learning Bayesian Networks, the textbook Foundations of Algorithms, which has been translated to three languages and is one of the most widely-used algorithms texts world-wide, and the 2007 text Probabilistic Methods for Financial and Marketing Informatics (Morgan Kaufmann Publishers).Dorian Pyle is Chief Scientist and Founder of PTI (www.pti.com), which develops and markets PowerhouseTM predictive and explanatory analytics software. Dorian has over 20 years experience in artificial intelligence and machine learning techniques which are used in what is known today as "data mining or "predictive analytics. He has applied this knowledge as a consultant with Knowledge Stream Partners, Xchange, Naviant, Thinking Machines, and Data Miners and with various companies directly involved in credit card marketing for banks and with manufacturing companies using industrial automation. In 1976 he was involved in building artificially intelligent machine learning systems utilizing the pioneering technologies that are currently known as neural computing and associative memories. He is current in and familiar with using the most advanced technologies in data mining including: entropic analysis (information theory), chaotic and fractal decomposition, neural technologies, evolution and genetic optimization, algebra evolvers, case-based reasoning, concept induction and other advanced statistical techniques.Mamdouh Refaat is a data mining and business analytics consultant advising major organizations in North America and Europe. He has held several positions in consulting organizations and software vendors, including the director of consulting services at ANGOSS Software Corporation, a global data mining software and service provider. During his career, Mamdouh has managed numerous data mining consulting projects in marketing, CRM, and credit risk for Fortune 500 organizations in North America and Europe. In addition, he has delivered over 50 professional training courses in data mining and business analytics. Mamdouh holds a Ph.D. in Engineering from the University of Toronto, and an MBA from the University of Leeds.During his career, Mamdouh has managed numerous data mining consulting projects in marketing, CRM, and credit risk for Fortune 500 organizations in North America and Europe. In addition, he has delivered over 50 professional training courses in data mining and business analytics.Mamdouh holds a PhD in Engineering from the University of Toronto, and an MBA from the University of Leeds.Markus Schneider is an Assistant Professor in the Computer Science Department of the University of Florida and holds a doctoral degree in Computer Science from the University of Hagen, Germany. He is author of a monograph in the area of spatial databases and of a German textbook on implementation concepts for database systems, and has published about 40 articles on database systems. He is on the editorial board of GeoInformatica.

เดˆ เด‡-เดฌเตเด•เตเด•เต เดฑเต‡เดฑเตเดฑเต เดšเต†เดฏเตเดฏเตเด•

เดจเดฟเด™เตเด™เดณเตเดŸเต† เด…เดญเดฟเดชเตเดฐเดพเดฏเด‚ เดžเด™เตเด™เดณเต† เด…เดฑเดฟเดฏเดฟเด•เตเด•เตเด•.

เดตเดพเดฏเดจเดพ เดตเดฟเดตเดฐเด™เตเด™เตพ

เดธเตโ€ŒเดฎเดพเตผเดŸเตเดŸเตเดซเต‹เดฃเตเด•เดณเตเด‚ เดŸเดพเดฌเตโ€Œเดฒเต†เดฑเตเดฑเตเด•เดณเตเด‚
Android, iPad/iPhone เดŽเดจเตเดจเดฟเดตเดฏเตเด•เตเด•เดพเดฏเดฟ Google Play เดฌเตเด•เตโ€Œเดธเต เด†เดชเตเดชเต เด‡เตปเดธเตโ€Œเดฑเตเดฑเดพเตพ เดšเต†เดฏเตเดฏเตเด•. เด‡เดคเต เดจเดฟเด™เตเด™เดณเตเดŸเต† เด…เด•เตเด•เต—เดฃเตเดŸเตเดฎเดพเดฏเดฟ เดธเตเดตเดฏเดฎเต‡เดต เดธเดฎเดจเตเดตเดฏเดฟเดชเตเดชเดฟเด•เตเด•เดชเตเดชเต†เดŸเตเด•เดฏเตเด‚, เดŽเดตเดฟเดŸเต† เด†เดฏเดฟเดฐเตเดจเตเดจเดพเดฒเตเด‚ เด“เตบเดฒเตˆเดจเดฟเตฝ เด…เดฒเตเดฒเต†เด™เตเด•เดฟเตฝ เด“เดซเตโ€Œเดฒเตˆเดจเดฟเตฝ เดตเดพเดฏเดฟเด•เตเด•เดพเตป เดจเดฟเด™เตเด™เดณเต† เด…เดจเตเดตเดฆเดฟเด•เตเด•เตเด•เดฏเตเด‚ เดšเต†เดฏเตเดฏเตเดจเตเดจเต.
เดฒเดพเดชเตเดŸเต‹เดชเตเดชเตเด•เดณเตเด‚ เด•เดฎเตเดชเตเดฏเต‚เดŸเตเดŸเดฑเตเด•เดณเตเด‚
Google Play-เดฏเดฟเตฝ เดจเดฟเดจเตเดจเต เดตเดพเด™เตเด™เดฟเดฏเดฟเดŸเตเดŸเตเดณเตเดณ เด“เดกเดฟเดฏเต‹ เดฌเตเด•เตเด•เตเด•เตพ เด•เดฎเตเดชเตเดฏเต‚เดŸเตเดŸเดฑเดฟเดจเตโ€เดฑเต† เดตเต†เดฌเต เดฌเตเดฐเต—เดธเตผ เด‰เดชเดฏเต‹เด—เดฟเดšเตเดšเตเด•เตŠเดฃเตเดŸเต เดตเดพเดฏเดฟเด•เตเด•เดพเดตเตเดจเตเดจเดคเดพเดฃเต.
เด‡-เดฑเต€เดกเดฑเตเด•เดณเตเด‚ เดฎเดฑเตเดฑเต เด‰เดชเด•เดฐเดฃเด™เตเด™เดณเตเด‚
Kobo เด‡-เดฑเต€เดกเดฑเตเด•เตพ เดชเต‹เดฒเตเดณเตเดณ เด‡-เด‡เด™เตเด•เต เด‰เดชเด•เดฐเดฃเด™เตเด™เดณเดฟเตฝ เดตเดพเดฏเดฟเด•เตเด•เดพเตป เด’เดฐเต เดซเดฏเตฝ เดกเต—เตบเดฒเต‹เดกเต เดšเต†เดฏเตเดคเต เด…เดคเต เดจเดฟเด™เตเด™เดณเตเดŸเต† เด‰เดชเด•เดฐเดฃเดคเตเดคเดฟเดฒเต‡เด•เตเด•เต เด•เตˆเดฎเดพเดฑเต‡เดฃเตเดŸเดคเตเดฃเตเดŸเต. เดชเดฟเดจเตเดคเตเดฃเดฏเตเดณเตเดณ เด‡-เดฑเต€เดกเดฑเตเด•เดณเดฟเดฒเต‡เด•เตเด•เต เดซเดฏเดฒเตเด•เตพ เด•เตˆเดฎเดพเดฑเดพเตป, เดธเดนเดพเดฏ เด•เต‡เดจเตเดฆเตเดฐเดคเตเดคเดฟเดฒเตเดณเตเดณ เดตเดฟเดถเดฆเดฎเดพเดฏ เดจเดฟเตผเดฆเตเดฆเต‡เดถเด™เตเด™เตพ เดซเต‹เดณเต‹ เดšเต†เดฏเตเดฏเตเด•.

Soumen Chakrabarti เดŽเดจเตเดจ เดฐเดšเดฏเดฟเดคเดพเดตเดฟเดจเตเดฑเต† เด•เต‚เดŸเตเดคเตฝ เดชเตเดธเตโ€Œเดคเด•เด™เตเด™เตพ

เดธเดฎเดพเดจเดฎเดพเดฏ เด‡-เดฌเตเด•เตเด•เตเด•เตพ