Dimensionsreduktion, Gamma-Konvergenz und Konvergenz numerischer Verfahren für elastische, fadenförmige und undehnbare Körper

· Aus der Reihe: e-fellows.net stipendiaten-wissen · GRIN Verlag
Libro electrónico
124
Páginas
Apto
Las calificaciones y opiniones no están verificadas. Más información

Acerca de este libro electrónico

Masterarbeit aus dem Jahr 2017 im Fachbereich Mathematik - Angewandte Mathematik, Note: 1,0, Albert-Ludwigs-Universität Freiburg (Angewandte Mathematik), Sprache: Deutsch, Abstract: Lange, fadenförmige, elastische Körper oder Stäbe treten in verschiedenen natürlichen Gegebenheiten auf. Sehr bekannte Beispiele stellen das menschliche Haar oder ein DNA-Strang dar. Im Großformat können Bäume oder Gräser ebenfalls mit Stäben verglichen werden; sie widerstreben der Gravitationskraft, ihre Biegesteifigkeit erhält ihre aufrechte Haltung. Auch in vielen technischen Anwendungen treten Stäbe, etwa in Form von Kabeln, Seilen oder textilen Fasern auf. Die genannten Beispiele verdeutlichen die elementare Rolle von Faden- und Balkenmodellen. Die Untersuchung der Bewegung solcher stark deformierbarer Kontinua ist ein altbekanntes Teilgebiet der angewandten Mechanik und wurde bereits von den Mathematikern Jakob I. Bernoulli (1655-1705) und Leonard Euler (1707-1783) untersucht. Unterschiedliche Annahmen an das Kontinuum lassen die Herleitung verschiedener Modelle zu. So liefert uns die Vernachlässigung von Biege- und Torsionssteifigkeit das sogenannte Fadenmodell; unter der zusätzlichen Annahme einer unveränderlichen Länge der Längsachse des Körpers erhalten wir ein undehnbares Modell. Die Unterscheidung der Bezeichnung des Körpers als Balken, Stab oder Faden stammt von den jeweiligen Steifigkeitseigenschaften. In dieser Arbeit wollen wir die partielle Differentialgleichung, welche die Bewegung eines undehnbaren, fadenförmigen Körpers beschreibt, untersuchen, verschiedene iterative Verfahren, welche die Bewegung der Kurve approximieren, analysieren und deren Konvergenzverhalten beschreiben. Besondere Bedeutung wird auf die Betrachtung der Bogenlängenparametrisierung gelegt. Da die numerische Approximation diese nur bedingt erhält, sind wir an dem Grad der Verletzung der Nebenbedingung interessiert.

Califica este libro electrónico

Cuéntanos lo que piensas.

Información de lectura

Smartphones y tablets
Instala la app de Google Play Libros para Android y iPad/iPhone. Como se sincroniza de manera automática con tu cuenta, te permite leer en línea o sin conexión en cualquier lugar.
Laptops y computadoras
Para escuchar audiolibros adquiridos en Google Play, usa el navegador web de tu computadora.
Lectores electrónicos y otros dispositivos
Para leer en dispositivos de tinta electrónica, como los lectores de libros electrónicos Kobo, deberás descargar un archivo y transferirlo a tu dispositivo. Sigue las instrucciones detalladas que aparecen en el Centro de ayuda para transferir los archivos a lectores de libros electrónicos compatibles.