Discrete Mathematics: A Concise Introduction

· Springer Nature
eBook
253
페이지
검증되지 않은 평점과 리뷰입니다.  자세히 알아보기

eBook 정보

This book is ideal for a first or second year discrete mathematics course for mathematics, engineering, and computer science majors. The author has extensively class-tested early conceptions of the book over the years and supplements mathematical arguments with informal discussions to aid readers in understanding the presented topics. “Safe” – that is, paradox-free – informal set theory is introduced following on the heels of Russell’s Paradox as well as the topics of finite, countable, and uncountable sets with an exposition and use of Cantor’s diagonalisation technique. Predicate logic “for the user” is introduced along with axioms and rules and extensive examples. Partial orders and the minimal condition are studied in detail with the latter shown to be equivalent to the induction principle. Mathematical induction is illustrated with several examples and is followed by a thorough exposition of inductive definitions of functions and sets. Techniques for solving recurrence relations including generating functions, the O- and o-notations, and trees are provided. Over 200 end of chapter exercises are included to further aid in the understanding and applications of discrete mathematics.

저자 정보

George Tourlakis, Ph.D., is a Professor in the Department of Electrical Engineering and Computer Science at York University, Toronto, Canada. He obtained his B.Sc. in mechanical and electrical engineering from the National Technical University of Athens and his M.Sc. and Ph.D. in computer science from the University of Toronto. Dr. Tourlakis has authored eight books in computability, logic, and axiomatic set theory and has also authored several journal articles in computability and modal logic. His research interests include calculational logic, modal logic, proof theory, computability with partial oracles, and complexity theory.

이 eBook 평가

의견을 알려주세요.

읽기 정보

스마트폰 및 태블릿
AndroidiPad/iPhoneGoogle Play 북 앱을 설치하세요. 계정과 자동으로 동기화되어 어디서나 온라인 또는 오프라인으로 책을 읽을 수 있습니다.
노트북 및 컴퓨터
컴퓨터의 웹브라우저를 사용하여 Google Play에서 구매한 오디오북을 들을 수 있습니다.
eReader 및 기타 기기
Kobo eReader 등의 eBook 리더기에서 읽으려면 파일을 다운로드하여 기기로 전송해야 합니다. 지원되는 eBook 리더기로 파일을 전송하려면 고객센터에서 자세한 안내를 따르세요.