Eindeutige Analytische Funktionen: Ausgabe 2

· Springer-Verlag
E-Book
379
Seiten
Bewertungen und Rezensionen werden nicht geprüft  Weitere Informationen

Über dieses E-Book

Die eindeutigen analytischen Funktionen können von verschiedenen Gesichtspunkten aus untersucht werden. Die in der vorliegenden Arbeit zur Darstellung gelangenden Fragen gruppieren sich um ein großes Hauptproblem. Einige allgemeine Bemerkungen über diese zentrale Fragestellung sollen hier vorausgeschickt werden. Wir denken uns ein gegebenes analytisches Funktionselement un beschränkt fortgesetzt. Angenommen, daß die so entstehende analytische Funktion w = w (z) eindeutig ist, existiert ein schlichtes Gebiet G mit z nachstehenden Eigenschaften. 1. Jedem inneren Punkt z von G entspricht ein und nur ein Element z von rationalem Charakter der Funktion w(z). 2. Jeder Randpunkt z* von G ist eine wesentliche Singularität z von w(z). Falls G die ganze geschlossene Ebene umfaßt (elliptischer Fall), z so ist w (z) eine rationale Funktion. Schließt man diesen einfachsten Sonderfall aus, so hat man zwei Fälle zu unterscheiden, je nachdem G z einfach oder mehrfach rusammenhängend ist. Wir beschränken uns auf den erstgenannten Fa}! und haben dann weitere zwei Möglichkeiten zu berücksichtigen: die Berandung r von G ist entweder ein Punkt z z (parabolischer Fall) oder ein Kontinuum (hyperbolischer Fall). Das Gebiet G wird durch die Funktion w = w (z) auf eine über der z w-Ebene ausgebreitete RIEMANNSche Fläche G .konform abgebildet. to Die Umkehrfunktion z = z(w) von w(z) ist eine auf dieser Fläche G to eindeutige und wegen der Eindeutigkeit von w (z) einwertige Funktion, d. h. den Mittelpunkten von zwei verschiedenen Elementen von z(w) sind stets zwei verschiedene Punkte z zugeordnet.

Dieses E-Book bewerten

Deine Meinung ist gefragt!

Informationen zum Lesen

Smartphones und Tablets
Nachdem du die Google Play Bücher App für Android und iPad/iPhone installiert hast, wird diese automatisch mit deinem Konto synchronisiert, sodass du auch unterwegs online und offline lesen kannst.
Laptops und Computer
Im Webbrowser auf deinem Computer kannst du dir Hörbucher anhören, die du bei Google Play gekauft hast.
E-Reader und andere Geräte
Wenn du Bücher auf E-Ink-Geräten lesen möchtest, beispielsweise auf einem Kobo eReader, lade eine Datei herunter und übertrage sie auf dein Gerät. Eine ausführliche Anleitung zum Übertragen der Dateien auf unterstützte E-Reader findest du in der Hilfe.