Real Analysis

· Springer Science & Business Media
Ebook
485
Pages
Ratings and reviews aren’t verified  Learn More

About this ebook

This book is a self-contained introduction to real analysis assuming only basic notions on limits of sequences in ]RN, manipulations of series, their convergence criteria, advanced differential calculus, and basic algebra of sets. The passage from the setting in ]RN to abstract spaces and their topologies is gradual. Continuous reference is made to the ]RN setting, where most of the basic concepts originated. The first seven chapters contain material forming the backbone of a basic training in real analysis. The remaining two chapters are more topical, relating to maximal functions, functions of bounded mean oscillation, rearrangements, potential theory, and the theory of Sobolev functions. Even though the layout of the book is theoretical, the entire book and the last chapters in particular concern applications of mathematical analysis to models of physical phenomena through partial differential equations. The preliminaries contain a review of the notions of countable sets and related examples. We introduce some special sets, such as the Cantor set and its variants, and examine their structure. These sets will be a reference point for a number of examples and counterexamples in measure theory (Chapter II) and in the Lebesgue differentiability theory of absolute continuous functions (Chapter IV). This initial chapter also contains a brief collection of the various notions of ordering, the Hausdorff maximal principle, Zorn's lemma, the well-ordering principle, and their fundamental connections.

Rate this ebook

Tell us what you think.

Reading information

Smartphones and tablets
Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.
Laptops and computers
You can listen to audiobooks purchased on Google Play using your computer's web browser.
eReaders and other devices
To read on e-ink devices like Kobo eReaders, you'll need to download a file and transfer it to your device. Follow the detailed Help Center instructions to transfer the files to supported eReaders.