The Chemistry of Hyperpolarized Magnetic Resonance Probes

·
· Advances in Magnetic Resonance Technology and Applications Book 12 · Academic Press
Ebook
200
Pages
Eligible
Ratings and reviews aren’t verified  Learn More

About this ebook

The Chemistry of Hyperpolarized Magnetic Resonance Probes, Volume Seven focuses on the chemical aspects of hyperpolarized NMR/MRI technology, with synthesis and characterizations of labeled compounds discussed from a practical point-of-view. A brief overview of the various hyperpolarization techniques are given, with the optimization of hyperpolarization conditions and the determination of critical parameters such as polarization level and T1 relaxation values described. A practical guide on the in vivo applications of hyperpolarized compounds in small animals is also included. - Helps readers understand the structural features that determine the properties of HP-probes, such as chemical shift and relaxation times - Aids readers in selecting stable isotope labeled probes for hyperpolarized NMR/MRI applications - Teachers readers how to use the most appropriate synthetic methodology for the labeled probes - Covers how to find the most suitable polarization technique (DNP, PHIP etc.) for the probe

About the author

Dr. Suh is an assistant professor with the college of pharmacy, University of North Texas Health Science Centre. She received her Ph.D. in Biomedical Engineering from UT Southwestern. She is interested in developing 13C, 15N-labeled compound as hyperpolarized MR probe that can be used as a tracer in in vivo real time metabolism study. She has been working with Dr. Park to investigate branched-chain amino acids metabolism in glioma.

Zoltan Kovacs, Ph.D., UT Southwestern specializes in the design and synthesis of novel agents for magnetic resonance imaging and radiopharmaceutical applications. One major current emphasis of Dr. Kovacs’ work is generating hyperpolarized compounds for magnetic resonance spectroscopy (MRS) and imaging (MRI) of nuclei other than 1H. Conventional MRI is not well suited for imaging nuclei other than proton because of the inherently low sensitivity of NMR. The technology of supercharging the nuclear spin of molecules, called dynamic nuclear polarization (DNP) can dramatically increase the sensitivity of MRS and MRI analysis. Dr. Kovacs is designing hyperpolarized 13C-labeled compounds that can be used as tracers to analyze the flux of molecules through metabolic pathways in healthy and diseased tissues. While 13C labeled substrates can directly enter the metabolic processes, their application is limited by rapid loss of spin polarization, called T1 relaxation, ranging from few seconds to a couple of minutes. Dr. Kovacs is developing tracer molecules based on the nonradioactive isotope 89Y and other low gamma nuclei such as 107.109Ag, which can have relaxation times of up to several minutes. Dr. Kovacs is developing various hyperpolarized 89Y-containing complexes that could be used to measure physiological parameters such as pH, temperature, and the oxidation/reduction state of molecules.

Rate this ebook

Tell us what you think.

Reading information

Smartphones and tablets
Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.
Laptops and computers
You can listen to audiobooks purchased on Google Play using your computer's web browser.
eReaders and other devices
To read on e-ink devices like Kobo eReaders, you'll need to download a file and transfer it to your device. Follow the detailed Help Center instructions to transfer the files to supported eReaders.