Extensions of Rings and Modules

· ·
· Springer Science & Business Media
E-Book
432
Seiten
Bewertungen und Rezensionen werden nicht geprüft  Weitere Informationen

Über dieses E-Book

The focus of this monograph is the study of rings and modules which have a rich supply of direct summands with respect to various extensions. The first four chapters of the book discuss rings and modules which generalize injectivity (e.g., extending modules), or for which certain annihilators become direct summands (e.g., Baer rings). Ring extensions such as matrix, polynomial, group ring, and essential extensions of rings from the aforementioned classes are considered in the next three chapters. A theory of ring and module hulls relative to a specific class of rings or modules is introduced and developed in the following two chapters. While applications of the results presented can be found throughout the book, the final chapter mainly consists of applications to algebra and functional analysis. These include obtaining characterizations of rings of quotients as direct products of prime rings and descriptions of certain C*-algebras via (quasi-)Baer rings.

Extensions of Rings and Modules introduces for the first time in book form:


* Baer, quasi-Baer, and Rickart modules
* The theory of generalized triangular matrix rings via sets of triangulating idempotents
* A discussion of essential overrings that are not rings of quotients of a base ring and Osofsky's study on the self-injectivity of the injective hull of a ring
* Applications of the theory of quasi-Baer rings to C*-algebras

Each section of the book is enriched with examples and exercises which make this monograph useful not only for experts but also as a text for advanced graduate courses. Historical notes appear at the end of each chapter, and a list of Open Problems and Questions is provided to stimulate further research in this area.

With over 400 references, Extensions of Rings and Modules will be of interest to researchers in algebra and analysis and to advanced graduate students in mathematics.

Dieses E-Book bewerten

Deine Meinung ist gefragt!

Informationen zum Lesen

Smartphones und Tablets
Nachdem du die Google Play Bücher App für Android und iPad/iPhone installiert hast, wird diese automatisch mit deinem Konto synchronisiert, sodass du auch unterwegs online und offline lesen kannst.
Laptops und Computer
Im Webbrowser auf deinem Computer kannst du dir Hörbucher anhören, die du bei Google Play gekauft hast.
E-Reader und andere Geräte
Wenn du Bücher auf E-Ink-Geräten lesen möchtest, beispielsweise auf einem Kobo eReader, lade eine Datei herunter und übertrage sie auf dein Gerät. Eine ausführliche Anleitung zum Übertragen der Dateien auf unterstützte E-Reader findest du in der Hilfe.