The Mathematics of Various Entertaining Subjects: Volume 3: The Magic of Mathematics

·
· Princeton University Press
Ebook
352
Pages
Eligible
Ratings and reviews aren’t verified  Learn More

About this ebook

The history of mathematics is replete with examples of major breakthroughs resulting from solutions to recreational problems. The modern theory of probability arose out of problems of concern to gamblers, for example, and modern combinatorics grew out of various games and puzzles. Despite this track record and a wealth of popular-level books, there remain few conduits for research in recreational mathematics. The Mathematics of Various Entertaining Subjects now returns with an all-new third volume, presenting new research in diverse areas of recreational mathematics.

This volume focuses on four areas: puzzles and brainteasers, games, algebra and number theory, and geometry and topology. Readers will create Spiral Galaxies, Japanese symmetric grid puzzles consisting of squares and circles whose solutions are letters and numbers; delve into a paradox in the game of Bingo; examine the card tricks of mathematician-philosopher Charles Sanders Peirce; learn about the mathematics behind Legos; and much more.

Elucidating the many connections between mathematics and games, The Mathematics of Various Entertaining Subjects is sure to challenge and inspire mathematicians and math enthusiasts.

About the author

Jennifer Beineke is professor of mathematics at Western New England University. Jason Rosenhouse is professor of mathematics at James Madison University. Beineke and Rosenhouse are the coeditors of The Mathematics of Various Entertaining Subjects, Volumes 1 and 2 (Princeton).

Rate this ebook

Tell us what you think.

Reading information

Smartphones and tablets
Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.
Laptops and computers
You can listen to audiobooks purchased on Google Play using your computer's web browser.
eReaders and other devices
To read on e-ink devices like Kobo eReaders, you'll need to download a file and transfer it to your device. Follow the detailed Help Center instructions to transfer the files to supported eReaders.