Linguistic Geometry and its Applications

· ·
· Infinite Study
电子书
232
符合条件
评分和评价未经验证  了解详情

关于此电子书

The notion of linguistic geometry is defined in this book. It is pertinent to keep in the record that linguistic geometry differs from classical geometry. Many basic or fundamental concepts and notions of classical geometry are not true or extendable in the case of linguistic geometry. Hence, for simple illustration, facts like two distinct points in classical geometry always define a line passing through them; this is generally not true in linguistic geometry. Suppose we have two linguistic points as tall and light we cannot connect them, or technically, there is no line between them. However, let's take, for instance, two linguistic points, tall and very short, associated with the linguistic variable height of a person. We have a directed line joining from the linguistic point very short to the linguistic point tall. In this case, it is important to note that the direction is essential when the linguistic variable is a person's height. The other way line, from tall to very short, has no meaning. So in linguistic geometry, in general, we may not have a linguistic line; granted, we have a line, but we may not have it in both directions; the line may be directed. The linguistic distance is very far. So, the linguistic line directed or otherwise exists if and only if they are comparable. Hence the very concept of extending the line infinitely does not exist. Likewise, we cannot say as in classical geometry; three noncollinear points determine the plane in linguistic geometry. Further, we do not have the notion of the linguistic area of well-defined figures like a triangle, quadrilateral or any polygon as in the case of classical geometry. The best part of linguistic geometry is that we can define the new notion of linguistic social information geometric networks analogous to social information networks. This will be a boon to non-mathematics researchers in socio-sciences in other fields where natural languages can replace mathematics.

为此电子书评分

欢迎向我们提供反馈意见。

如何阅读

智能手机和平板电脑
只要安装 AndroidiPad/iPhone 版的 Google Play 图书应用,不仅应用内容会自动与您的账号同步,还能让您随时随地在线或离线阅览图书。
笔记本电脑和台式机
您可以使用计算机的网络浏览器聆听您在 Google Play 购买的有声读物。
电子阅读器和其他设备
如果要在 Kobo 电子阅读器等电子墨水屏设备上阅读,您需要下载一个文件,并将其传输到相应设备上。若要将文件传输到受支持的电子阅读器上,请按帮助中心内的详细说明操作。