Linguistic Geometry and its Applications

· ·
· Infinite Study
電子書
232
符合資格
評分和評論未經驗證  瞭解詳情

關於本電子書

The notion of linguistic geometry is defined in this book. It is pertinent to keep in the record that linguistic geometry differs from classical geometry. Many basic or fundamental concepts and notions of classical geometry are not true or extendable in the case of linguistic geometry. Hence, for simple illustration, facts like two distinct points in classical geometry always define a line passing through them; this is generally not true in linguistic geometry. Suppose we have two linguistic points as tall and light we cannot connect them, or technically, there is no line between them. However, let's take, for instance, two linguistic points, tall and very short, associated with the linguistic variable height of a person. We have a directed line joining from the linguistic point very short to the linguistic point tall. In this case, it is important to note that the direction is essential when the linguistic variable is a person's height. The other way line, from tall to very short, has no meaning. So in linguistic geometry, in general, we may not have a linguistic line; granted, we have a line, but we may not have it in both directions; the line may be directed. The linguistic distance is very far. So, the linguistic line directed or otherwise exists if and only if they are comparable. Hence the very concept of extending the line infinitely does not exist. Likewise, we cannot say as in classical geometry; three noncollinear points determine the plane in linguistic geometry. Further, we do not have the notion of the linguistic area of well-defined figures like a triangle, quadrilateral or any polygon as in the case of classical geometry. The best part of linguistic geometry is that we can define the new notion of linguistic social information geometric networks analogous to social information networks. This will be a boon to non-mathematics researchers in socio-sciences in other fields where natural languages can replace mathematics.

為這本電子書評分

歡迎提供意見。

閱讀資訊

智慧型手機與平板電腦
只要安裝 Google Play 圖書應用程式 Android 版iPad/iPhone 版,不僅應用程式內容會自動與你的帳戶保持同步,還能讓你隨時隨地上網或離線閱讀。
筆記型電腦和電腦
你可以使用電腦的網路瀏覽器聆聽你在 Google Play 購買的有聲書。
電子書閱讀器與其他裝置
如要在 Kobo 電子閱讀器這類電子書裝置上閱覽書籍,必須將檔案下載並傳輸到該裝置上。請按照說明中心的詳細操作說明,將檔案傳輸到支援的電子閱讀器上。