Markov Bases in Algebraic Statistics

· ·
· Springer Series in Statistics Boek 199 · Springer Science & Business Media
E-boek
300
Bladsye
Graderings en resensies word nie geverifieer nie. Kom meer te wete

Meer oor hierdie e-boek

Algebraic statistics is a rapidly developing field, where ideas from statistics and algebra meet and stimulate new research directions. One of the origins of algebraic statistics is the work by Diaconis and Sturmfels in 1998 on the use of Gröbner bases for constructing a connected Markov chain for performing conditional tests of a discrete exponential family. In this book we take up this topic and present a detailed summary of developments following the seminal work of Diaconis and Sturmfels.

This book is intended for statisticians with minimal backgrounds in algebra. As we ourselves learned algebraic notions through working on statistical problems and collaborating with notable algebraists, we hope that this book with many practical statistical problems is useful for statisticians to start working on the field.

Meer oor die skrywer

Satoshi Aoki obtained his doctoral degree from the University of Tokyo in 2004 and is currently an associate professor in the Graduate School of Science and Engineering, Kagoshima University.

Hisayuki Hara obtained his doctoral degree from the University of Tokyo in 1999 and is currently an associate professor in the Faculty of Economics, Niigata University.

Akimichi Takemura obtained his doctoral degree from Stanford University in 1982 and is currently a professor in the Graduate School of Information Science and Technology, University of Tokyo.

Gradeer hierdie e-boek

Sê vir ons wat jy dink.

Lees inligting

Slimfone en tablette
Installeer die Google Play Boeke-app vir Android en iPad/iPhone. Dit sinkroniseer outomaties met jou rekening en maak dit vir jou moontlik om aanlyn of vanlyn te lees waar jy ook al is.
Skootrekenaars en rekenaars
Jy kan jou rekenaar se webblaaier gebruik om na oudioboeke wat jy op Google Play gekoop het, te luister.
E-lesers en ander toestelle
Om op e-inktoestelle soos Kobo-e-lesers te lees, moet jy ’n lêer aflaai en dit na jou toestel toe oordra. Volg die gedetailleerde hulpsentrumaanwysings om die lêers na ondersteunde e-lesers toe oor te dra.