Markov Bases in Algebraic Statistics

· ·
· Springer Series in Statistics 第 199 冊 · Springer Science & Business Media
電子書
300
頁數
評分和評論未經驗證 瞭解詳情

關於這本電子書

Algebraic statistics is a rapidly developing field, where ideas from statistics and algebra meet and stimulate new research directions. One of the origins of algebraic statistics is the work by Diaconis and Sturmfels in 1998 on the use of Gröbner bases for constructing a connected Markov chain for performing conditional tests of a discrete exponential family. In this book we take up this topic and present a detailed summary of developments following the seminal work of Diaconis and Sturmfels.

This book is intended for statisticians with minimal backgrounds in algebra. As we ourselves learned algebraic notions through working on statistical problems and collaborating with notable algebraists, we hope that this book with many practical statistical problems is useful for statisticians to start working on the field.

關於作者

Satoshi Aoki obtained his doctoral degree from the University of Tokyo in 2004 and is currently an associate professor in the Graduate School of Science and Engineering, Kagoshima University.

Hisayuki Hara obtained his doctoral degree from the University of Tokyo in 1999 and is currently an associate professor in the Faculty of Economics, Niigata University.

Akimichi Takemura obtained his doctoral degree from Stanford University in 1982 and is currently a professor in the Graduate School of Information Science and Technology, University of Tokyo.

為這本電子書評分

請分享你的寶貴意見。

閱讀資訊

智能手機和平板電腦
請安裝 Android 版iPad/iPhone 版「Google Play 圖書」應用程式。這個應用程式會自動與你的帳戶保持同步,讓你隨時隨地上網或離線閱讀。
手提電腦和電腦
你可以使用電腦的網絡瀏覽器聆聽在 Google Play 上購買的有聲書。
電子書閱讀器及其他裝置
如要在 Kobo 等電子墨水裝置上閱覽書籍,你需要下載檔案並傳輸到你的裝置。請按照說明中心的詳細指示,將檔案傳輸到支援的電子書閱讀器。