Markov Bases in Algebraic Statistics

· ·
· Springer Series in Statistics Ibhuku elingu-199 · Springer Science & Business Media
I-Ebook
300
Amakhasi
Izilinganiso nezibuyekezo aziqinisekisiwe  Funda Kabanzi

Mayelana nale ebook

Algebraic statistics is a rapidly developing field, where ideas from statistics and algebra meet and stimulate new research directions. One of the origins of algebraic statistics is the work by Diaconis and Sturmfels in 1998 on the use of Gröbner bases for constructing a connected Markov chain for performing conditional tests of a discrete exponential family. In this book we take up this topic and present a detailed summary of developments following the seminal work of Diaconis and Sturmfels.

This book is intended for statisticians with minimal backgrounds in algebra. As we ourselves learned algebraic notions through working on statistical problems and collaborating with notable algebraists, we hope that this book with many practical statistical problems is useful for statisticians to start working on the field.

Mayelana nomlobi

Satoshi Aoki obtained his doctoral degree from the University of Tokyo in 2004 and is currently an associate professor in the Graduate School of Science and Engineering, Kagoshima University.

Hisayuki Hara obtained his doctoral degree from the University of Tokyo in 1999 and is currently an associate professor in the Faculty of Economics, Niigata University.

Akimichi Takemura obtained his doctoral degree from Stanford University in 1982 and is currently a professor in the Graduate School of Information Science and Technology, University of Tokyo.

Nikeza le ebook isilinganiso

Sitshele ukuthi ucabangani.

Ulwazi lokufunda

Amasmathifoni namathebulethi
Faka uhlelo lokusebenza lwe-Google Play Amabhuku lwe-Android ne-iPad/iPhone. Livunyelaniswa ngokuzenzakalela ne-akhawunti yakho liphinde likuvumele ukuthi ufunde uxhunywe ku-inthanethi noma ungaxhunyiwe noma ngabe ukuphi.
Amakhompyutha aphathekayo namakhompyutha
Ungalalela ama-audiobook athengwe ku-Google Play usebenzisa isiphequluli sewebhu sekhompuyutha yakho.
Ama-eReaders namanye amadivayisi
Ukuze ufunde kumadivayisi e-e-ink afana ne-Kobo eReaders, uzodinga ukudawuniloda ifayela futhi ulidlulisele kudivayisi yakho. Landela imiyalelo Yesikhungo Sosizo eningiliziwe ukuze udlulise amafayela kuma-eReader asekelwayo.