Modern Projective Geometry

ยท
ยท Mathematics and Its Applications แƒฌแƒ˜แƒ’แƒœแƒ˜ 521 ยท Springer Science & Business Media
แƒ”แƒšแƒฌแƒ˜แƒ’แƒœแƒ˜
363
แƒ’แƒ•แƒ”แƒ แƒ“แƒ˜
แƒ แƒ”แƒ˜แƒขแƒ˜แƒœแƒ’แƒ”แƒ‘แƒ˜ แƒ“แƒ แƒ›แƒ˜แƒ›แƒแƒฎแƒ˜แƒšแƒ•แƒ”แƒ‘แƒ˜ แƒ“แƒแƒฃแƒ“แƒแƒกแƒขแƒฃแƒ แƒ”แƒ‘แƒ”แƒšแƒ˜แƒ ย แƒจแƒ”แƒ˜แƒขแƒงแƒ•แƒ”แƒ— แƒ›แƒ”แƒขแƒ˜

แƒแƒ› แƒ”แƒšแƒฌแƒ˜แƒ’แƒœแƒ˜แƒก แƒจแƒ”แƒกแƒแƒฎแƒ”แƒ‘

Projective geometry is a very classical part of mathematics and one might think that the subject is completely explored and that there is nothing new to be added. But it seems that there exists no book on projective geometry which provides a systematic treatment of morphisms. We intend to fill this gap. It is in this sense that the present monograph can be called modern. The reason why morphisms have not been studied much earlier is probably the fact that they are in general partial maps between the point sets G and G, noted ' 9 : G -- ~ G', i.e. maps 9 : D -4 G' whose domain Dom 9 := D is a subset of G. We give two simple examples of partial maps which ought to be morphisms. The first example is purely geometric. Let E, F be complementary subspaces of a projective geometry G. If x E G \ E, then g(x) := (E V x) n F (where E V x is the subspace generated by E U {x}) is a unique point of F, i.e. one obtains a map 9 : G \ E -4 F. As special case, if E = {z} is a singleton and F a hyperplane with z tf. F, then g: G \ {z} -4 F is the projection with center z of G onto F.

แƒจแƒ”แƒแƒคแƒแƒกแƒ”แƒ— แƒ”แƒก แƒ”แƒšแƒฌแƒ˜แƒ’แƒœแƒ˜

แƒ’แƒ•แƒ˜แƒ—แƒฎแƒแƒ แƒ˜แƒ— แƒ—แƒฅแƒ•แƒ”แƒœแƒ˜ แƒแƒ–แƒ แƒ˜.

แƒ˜แƒœแƒคแƒแƒ แƒ›แƒแƒชแƒ˜แƒ แƒฌแƒแƒ™แƒ˜แƒ—แƒฎแƒ•แƒแƒกแƒ—แƒแƒœ แƒ“แƒแƒ™แƒแƒ•แƒจแƒ˜แƒ แƒ”แƒ‘แƒ˜แƒ—

แƒกแƒ›แƒแƒ แƒขแƒคแƒแƒœแƒ”แƒ‘แƒ˜ แƒ“แƒ แƒขแƒแƒ‘แƒšแƒ”แƒขแƒ”แƒ‘แƒ˜
แƒ“แƒแƒแƒ˜แƒœแƒกแƒขแƒแƒšแƒ˜แƒ แƒ”แƒ— Google Play Books แƒแƒžแƒ˜ Android แƒ“แƒ iPad/iPhone แƒ›แƒแƒฌแƒงแƒแƒ‘แƒ˜แƒšแƒแƒ‘แƒ”แƒ‘แƒ˜แƒกแƒ—แƒ•แƒ˜แƒก. แƒ˜แƒก แƒแƒ•แƒขแƒแƒ›แƒแƒขแƒฃแƒ แƒแƒ“ แƒ’แƒแƒœแƒแƒฎแƒแƒ แƒชแƒ˜แƒ”แƒšแƒ”แƒ‘แƒก แƒกแƒ˜แƒœแƒฅแƒ แƒแƒœแƒ˜แƒ–แƒแƒชแƒ˜แƒแƒก แƒ—แƒฅแƒ•แƒ”แƒœแƒก แƒแƒœแƒ’แƒแƒ แƒ˜แƒจแƒ—แƒแƒœ แƒ“แƒ แƒกแƒแƒจแƒฃแƒแƒšแƒ”แƒ‘แƒแƒก แƒ›แƒแƒ’แƒชแƒ”แƒ›แƒ—, แƒฌแƒแƒ˜แƒ™แƒ˜แƒ—แƒฎแƒแƒ— แƒกแƒแƒกแƒฃแƒ แƒ•แƒ”แƒšแƒ˜ แƒ™แƒแƒœแƒขแƒ”แƒœแƒขแƒ˜ แƒœแƒ”แƒ‘แƒ˜แƒกแƒ›แƒ˜แƒ”แƒ  แƒแƒ“แƒ’แƒ˜แƒšแƒแƒก, แƒ แƒแƒ’แƒแƒ แƒช แƒแƒœแƒšแƒแƒ˜แƒœ, แƒ˜แƒกแƒ” แƒฎแƒแƒ–แƒ’แƒแƒ แƒ”แƒจแƒ” แƒ แƒ”แƒŸแƒ˜แƒ›แƒจแƒ˜.
แƒšแƒ”แƒžแƒขแƒแƒžแƒ”แƒ‘แƒ˜ แƒ“แƒ แƒ™แƒแƒ›แƒžแƒ˜แƒฃแƒขแƒ”แƒ แƒ”แƒ‘แƒ˜
Google Play-แƒจแƒ˜ แƒจแƒ”แƒซแƒ”แƒœแƒ˜แƒšแƒ˜ แƒแƒฃแƒ“แƒ˜แƒแƒฌแƒ˜แƒ’แƒœแƒ”แƒ‘แƒ˜แƒก แƒ›แƒแƒกแƒ›แƒ”แƒœแƒ แƒ—แƒฅแƒ•แƒ”แƒœแƒ˜ แƒ™แƒแƒ›แƒžแƒ˜แƒฃแƒขแƒ”แƒ แƒ˜แƒก แƒ•แƒ”แƒ‘-แƒ‘แƒ แƒแƒฃแƒ–แƒ”แƒ แƒ˜แƒก แƒ’แƒแƒ›แƒแƒงแƒ”แƒœแƒ”แƒ‘แƒ˜แƒ— แƒจแƒ”แƒ’แƒ˜แƒซแƒšแƒ˜แƒแƒ—.
แƒ”แƒšแƒฌแƒแƒ›แƒ™แƒ˜แƒ—แƒฎแƒ•แƒ”แƒšแƒ”แƒ‘แƒ˜ แƒ“แƒ แƒกแƒฎแƒ•แƒ แƒ›แƒแƒฌแƒงแƒแƒ‘แƒ˜แƒšแƒแƒ‘แƒ”แƒ‘แƒ˜
แƒ”แƒšแƒ”แƒฅแƒขแƒ แƒแƒœแƒฃแƒšแƒ˜ แƒ›แƒ”แƒšแƒœแƒ˜แƒก แƒ›แƒแƒฌแƒงแƒแƒ‘แƒ˜แƒšแƒแƒ‘แƒ”แƒ‘แƒ–แƒ” แƒฌแƒแƒกแƒแƒ™แƒ˜แƒ—แƒฎแƒแƒ“, แƒ แƒแƒ’แƒแƒ แƒ˜แƒชแƒแƒ Kobo eReaders, แƒ—แƒฅแƒ•แƒ”แƒœ แƒฃแƒœแƒ“แƒ แƒฉแƒแƒ›แƒแƒขแƒ•แƒ˜แƒ แƒ—แƒแƒ— แƒคแƒแƒ˜แƒšแƒ˜ แƒ“แƒ แƒ’แƒแƒ“แƒแƒ˜แƒขแƒแƒœแƒแƒ— แƒ˜แƒ’แƒ˜ แƒ—แƒฅแƒ•แƒ”แƒœแƒก แƒ›แƒแƒฌแƒงแƒแƒ‘แƒ˜แƒšแƒแƒ‘แƒแƒจแƒ˜. แƒ“แƒแƒฎแƒ›แƒแƒ แƒ”แƒ‘แƒ˜แƒก แƒชแƒ”แƒœแƒขแƒ แƒ˜แƒก แƒ“แƒ”แƒขแƒแƒšแƒฃแƒ แƒ˜ แƒ˜แƒœแƒกแƒขแƒ แƒฃแƒฅแƒชแƒ˜แƒ”แƒ‘แƒ˜แƒก แƒ›แƒ˜แƒฎแƒ”แƒ“แƒ•แƒ˜แƒ— แƒ’แƒแƒ“แƒแƒ˜แƒขแƒแƒœแƒ”แƒ— แƒคแƒแƒ˜แƒšแƒ”แƒ‘แƒ˜ แƒ›แƒฎแƒแƒ แƒ“แƒแƒญแƒ”แƒ แƒ˜แƒš แƒ”แƒšแƒฌแƒแƒ›แƒ™แƒ˜แƒ—แƒฎแƒ•แƒ”แƒšแƒ”แƒ‘แƒ–แƒ”.