XGBoost. The Extreme Gradient Boosting for Mining Applications

· GRIN Verlag
Ebook
52
Pages
Eligible
Ratings and reviews aren’t verified  Learn More

About this ebook

Technical Report from the year 2017 in the subject Computer Science - Internet, New Technologies, grade: 8, , language: English, abstract: Tree boosting has empirically proven to be a highly effective and versatile approach for data-driven modelling. The core argument is that tree boosting can adaptively determine the local neighbourhoods of the model thereby taking the bias-variance trade-off into consideration during model fitting. Recently, a tree boosting method known as XGBoost has gained popularity by providing higher accuracy. XGBoost further introduces some improvements which allow it to deal with the bias-variance trade-off even more carefully. In this research work, we propose to demonstrate the use of an adaptive procedure i.e. Learned Loss (LL) to update the loss function as the boosting proceeds. Accuracy of the proposed algorithm i.e. XGBoost with Learned Loss boosting function is evaluated using test/train method, K-fold cross validation, and Stratified cross validation method and compared with the state of the art algorithms viz. XGBoost, AdaBoost, AdaBoost-NN, Linear Regression(LR),Neural Network(NN), Decision Tree(DT), Support Vector Machine(SVM), bagging-DT, bagging-NN and Random Forest algorithms. The parameters evaluated are accuracy, Type 1 error and Type 2 error (in Percentages). This study uses total ten years of historical data from Jan 2007 to Aug 2017 of two stock market indices CNX Nifty and S&P BSE Sensex which are highly voluminous. Further, in this research work, we will investigate how XGBoost differs from the more traditional ensemble techniques. Moreover, we will discuss the regularization techniques that these methods offer and the effect these have on the models. In addition to this, we will attempt to answer the question of why XGBoost seems to win so many competitions. To do this, we will provide some arguments for why tree boosting, and in particular XGBoost, seems to be such a highly effective and versatile approach to predictive modelling. The core argument is that tree boosting can be seen to adaptively determine the local neighbourhoods of the model. Tree boosting can thus be seen to take the bias-variance trade off into consideration during model fitting. XGBoost further introduces some improvements which allow it to deal with the bias-variance trade off even more carefully.

Rate this ebook

Tell us what you think.

Reading information

Smartphones and tablets
Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.
Laptops and computers
You can listen to audiobooks purchased on Google Play using your computer's web browser.
eReaders and other devices
To read on e-ink devices like Kobo eReaders, you'll need to download a file and transfer it to your device. Follow the detailed Help Center instructions to transfer the files to supported eReaders.