Optimal Learning

Β·
Β· John Wiley & Sons
ЭлСктронная ΠΊΠ½ΠΈΠ³Π°
414
ΠšΠΎΠ»ΠΈΡ‡Π΅ΡΡ‚Π²ΠΎ страниц
ΠžΡ†Π΅Π½ΠΊΠΈ ΠΈ ΠΎΡ‚Π·Ρ‹Π²Ρ‹ Π½Π΅ ΠΏΡ€ΠΎΠ²Π΅Ρ€Π΅Π½Ρ‹. ΠŸΠΎΠ΄Ρ€ΠΎΠ±Π½Π΅Π΅β€¦

Об элСктронной ΠΊΠ½ΠΈΠ³Π΅

Learn the science of collecting information to make effective decisions

Everyday decisions are made without the benefit of accurate information. Optimal Learning develops the needed principles for gathering information to make decisions, especially when collecting information is time-consuming and expensive. Designed for readers with an elementary background in probability and statistics, the book presents effective and practical policies illustrated in a wide range of applications, from energy, homeland security, and transportation to engineering, health, and business.

This book covers the fundamental dimensions of a learning problem and presents a simple method for testing and comparing policies for learning. Special attention is given to the knowledge gradient policy and its use with a wide range of belief models, including lookup table and parametric and for online and offline problems. Three sections develop ideas with increasing levels of sophistication:

  • Fundamentals explores fundamental topics, including adaptive learning, ranking and selection, the knowledge gradient, and bandit problems
  • Extensions and Applications features coverage of linear belief models, subset selection models, scalar function optimization, optimal bidding, and stopping problems
  • Advanced Topics explores complex methods including simulation optimization, active learning in mathematical programming, and optimal continuous measurements

Each chapter identifies a specific learning problem, presents the related, practical algorithms for implementation, and concludes with numerous exercises. A related website features additional applications and downloadable software, including MATLAB and the Optimal Learning Calculator, a spreadsheet-based package that provides an introduction to learning and a variety of policies for learning.

Об Π°Π²Ρ‚ΠΎΡ€Π΅

WARREN B. POWELL, PhD, is Professor of Operations Research and Financial Engineering at Princeton University, where he is founder and Director of CASTLE Laboratory, a research unit that works with industrial partners to test new ideas found in operations research. The recipient of the 2004 INFORMS Fellow Award, Dr. Powell is the author of Approximate Dynamic Programming: Solving the Curses of Dimensionality, Second Edition (Wiley).

ILYA O. RYZHOV, PhD, is Assistant Professor in the Department of Decision, Operations, and Information Technologies at the Robert H. Smith School of Business at the University of Maryland. He has made fundamental contributions to bridge the fields of ranking and selection with multiarmed bandits and optimal learning with mathematical programming.

ΠžΡ†Π΅Π½ΠΈΡ‚Π΅ ΡΠ»Π΅ΠΊΡ‚Ρ€ΠΎΠ½Π½ΡƒΡŽ ΠΊΠ½ΠΈΠ³Ρƒ

ΠŸΠΎΠ΄Π΅Π»ΠΈΡ‚Π΅ΡΡŒ с Π½Π°ΠΌΠΈ своим ΠΌΠ½Π΅Π½ΠΈΠ΅ΠΌ.

Π“Π΄Π΅ Ρ‡ΠΈΡ‚Π°Ρ‚ΡŒ ΠΊΠ½ΠΈΠ³ΠΈ

Π‘ΠΌΠ°Ρ€Ρ‚Ρ„ΠΎΠ½Ρ‹ ΠΈ ΠΏΠ»Π°Π½ΡˆΠ΅Ρ‚Ρ‹
УстановитС ΠΏΡ€ΠΈΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Google Play Книги для Android ΠΈΠ»ΠΈ iPad/iPhone. Оно синхронизируСтся с вашим Π°ΠΊΠΊΠ°ΡƒΠ½Ρ‚ΠΎΠΌ автоматичСски, ΠΈ Π²Ρ‹ смоТСтС Ρ‡ΠΈΡ‚Π°Ρ‚ΡŒ Π»ΡŽΠ±ΠΈΠΌΡ‹Π΅ ΠΊΠ½ΠΈΠ³ΠΈ ΠΎΠ½Π»Π°ΠΉΠ½ ΠΈ ΠΎΡ„Π»Π°ΠΉΠ½ Π³Π΄Π΅ ΡƒΠ³ΠΎΠ΄Π½ΠΎ.
Ноутбуки ΠΈ Π½Π°ΡΡ‚ΠΎΠ»ΡŒΠ½Ρ‹Π΅ ΠΊΠΎΠΌΠΏΡŒΡŽΡ‚Π΅Ρ€Ρ‹
Π‘Π»ΡƒΡˆΠ°ΠΉΡ‚Π΅ Π°ΡƒΠ΄ΠΈΠΎΠΊΠ½ΠΈΠ³ΠΈ ΠΈΠ· Google Play Π² Π²Π΅Π±-Π±Ρ€Π°ΡƒΠ·Π΅Ρ€Π΅ Π½Π° ΠΊΠΎΠΌΠΏΡŒΡŽΡ‚Π΅Ρ€Π΅.
Устройства для чтСния ΠΊΠ½ΠΈΠ³
Π§Ρ‚ΠΎΠ±Ρ‹ ΠΎΡ‚ΠΊΡ€Ρ‹Ρ‚ΡŒ ΠΊΠ½ΠΈΠ³Ρƒ Π½Π° Ρ‚Π°ΠΊΠΎΠΌ устройствС для чтСния, ΠΊΠ°ΠΊ Kobo, скачайтС Ρ„Π°ΠΉΠ» ΠΈ Π΄ΠΎΠ±Π°Π²ΡŒΡ‚Π΅ Π΅Π³ΠΎ Π½Π° устройство. ΠŸΠΎΠ΄Ρ€ΠΎΠ±Π½Ρ‹Π΅ инструкции ΠΌΠΎΠΆΠ½ΠΎ Π½Π°ΠΉΡ‚ΠΈ Π² Π‘ΠΏΡ€Π°Π²ΠΎΡ‡Π½ΠΎΠΌ Ρ†Π΅Π½Ρ‚Ρ€Π΅.