In this memoir, the authors prove both analogous statements for general negatively curved Kählerian groups. The construction relies on the one hand on combining a non-Abelian version of oscillatory integral on tempered Lie groups with geom,etrical objects coming from invariant WKB-quantization of solvable symplectic symmetric spaces, and, on the second hand, in establishing a non-Abelian version of the Calderón-Vaillancourt Theorem. In particular, the authors give an oscillating kernel formula for WKB-star products on symplectic symmetric spaces that fiber over an exponential Lie group.
Pierre Bieliavsky, Université Catholique de Louvain, Louvain le Neuve, Belgium, and Victor Gayral, Laboratoire de Mathématiques, Reims, France