Polya Urn Models

¡ CRC Press
āχ-āĻŦ⧁āĻ•
312
āĻĒ⧃āĻˇā§āĻ āĻž
āωāĻĒāϝ⧁āĻ•ā§āϤ
āϰ⧇āϟāĻŋāĻ‚ āĻ“ āϰāĻŋāĻ­āĻŋāω āϝāĻžāϚāĻžāχ āĻ•āϰāĻž āĻšā§ŸāύāĻŋ  āφāϰāĻ“ āϜāĻžāύ⧁āύ

āĻāχ āχ-āĻŦ⧁āϕ⧇āϰ āĻŦāĻŋāĻˇā§Ÿā§‡

Incorporating a collection of recent results, Polya Urn Models deals with discrete probability through the modern and evolving urn theory and its numerous applications. It looks at how some classical problems of discrete probability have roots in urn models. The book covers the Polya-Eggenberger, Bernard Friedman's, the Bagchi-Pal, and the Ehrenfest urns. It also explains the processes of poissonization and depoissonization and presents applications to random trees, evolution, competitive exclusion, epidemiology, clinical trials, and random circuits. The text includes end-of-chapter exercises that range from easy to challenging, along with solutions in the back of the book.

āχ-āĻŦ⧁āϕ⧇ āϰ⧇āϟāĻŋāĻ‚ āĻĻāĻŋāύ

āφāĻĒāύāĻžāϰ āĻŽāϤāĻžāĻŽāϤ āϜāĻžāύāĻžāύāĨ¤

āĻĒāĻ āύ āϤāĻĨā§āϝ

āĻ¸ā§āĻŽāĻžāĻ°ā§āϟāĻĢā§‹āύ āĻāĻŦāĻ‚ āĻŸā§āϝāĻžāĻŦāϞ⧇āϟ
Android āĻāĻŦāĻ‚ iPad/iPhone āĻāϰ āϜāĻ¨ā§āϝ Google Play āĻŦāχ āĻ…ā§āϝāĻžāĻĒ āχāύāĻ¸ā§āϟāϞ āĻ•āϰ⧁āύāĨ¤ āĻāϟāĻŋ āφāĻĒāύāĻžāϰ āĻ…ā§āϝāĻžāĻ•āĻžāωāĻ¨ā§āĻŸā§‡āϰ āϏāĻžāĻĨ⧇ āĻ…āĻŸā§‹āĻŽā§‡āϟāĻŋāĻ• āϏāĻŋāĻ™ā§āĻ• āĻšā§Ÿ āĻ“ āφāĻĒāύāĻŋ āĻ…āύāϞāĻžāχāύ āĻŦāĻž āĻ…āĻĢāϞāĻžāχāύ āϝāĻžāχ āĻĨāĻžāϕ⧁āύ āύāĻž āϕ⧇āύ āφāĻĒāύāĻžāϕ⧇ āĻĒ⧜āϤ⧇ āĻĻā§‡ā§ŸāĨ¤
āĻ˛ā§āϝāĻžāĻĒāϟāĻĒ āĻ“ āĻ•āĻŽā§āĻĒāĻŋāωāϟāĻžāϰ
Google Play āĻĨ⧇āϕ⧇ āϕ⧇āύāĻž āĻ…āĻĄāĻŋāĻ“āĻŦ⧁āĻ• āφāĻĒāύāĻŋ āĻ•āĻŽā§āĻĒāĻŋāωāϟāĻžāϰ⧇āϰ āĻ“ā§Ÿā§‡āĻŦ āĻŦā§āϰāĻžāωāϜāĻžāϰ⧇ āĻļ⧁āύāϤ⧇ āĻĒāĻžāϰ⧇āύāĨ¤
eReader āĻāĻŦāĻ‚ āĻ…āĻ¨ā§āϝāĻžāĻ¨ā§āϝ āĻĄāĻŋāĻ­āĻžāχāϏ
Kobo eReaders-āĻāϰ āĻŽāϤ⧋ e-ink āĻĄāĻŋāĻ­āĻžāχāϏ⧇ āĻĒāĻĄāĻŧāϤ⧇, āφāĻĒāύāĻžāϕ⧇ āĻāĻ•āϟāĻŋ āĻĢāĻžāχāϞ āĻĄāĻžāωāύāϞ⧋āĻĄ āĻ“ āφāĻĒāύāĻžāϰ āĻĄāĻŋāĻ­āĻžāχāϏ⧇ āĻŸā§āϰāĻžāĻ¨ā§āϏāĻĢāĻžāϰ āĻ•āϰāϤ⧇ āĻšāĻŦ⧇āĨ¤ āĻŦā§āϝāĻŦāĻšāĻžāϰāĻ•āĻžāϰ⧀āϰ āωāĻĻā§āĻĻ⧇āĻļā§āϝ⧇ āϤ⧈āϰāĻŋ āϏāĻšāĻžā§ŸāϤāĻž āϕ⧇āĻ¨ā§āĻĻā§āϰāϤ⧇ āĻĻ⧇āĻ“ā§ŸāĻž āύāĻŋāĻ°ā§āĻĻ⧇āĻļāĻžāĻŦāϞ⧀ āĻ…āύ⧁āϏāϰāĻŖ āĻ•āϰ⧇ āϝ⧇āϏāĻŦ eReader-āĻ āĻĢāĻžāχāϞ āĻĒāĻĄāĻŧāĻž āϝāĻžāĻŦ⧇ āϏ⧇āĻ–āĻžāύ⧇ āĻŸā§āϰāĻžāĻ¨ā§āϏāĻĢāĻžāϰ āĻ•āϰ⧁āύāĨ¤