Homotopy Equivalences of 3-Manifolds and Deformation Theory of Kleinian Groups

·
· American Mathematical Soc.
Ebook
218
Pages
Ratings and reviews aren’t verified  Learn More

About this ebook

This text investigates a natural question arising in the topological theory of $3$-manifolds, and applies the results to give new information about the deformation theory of hyperbolic $3$-manifolds. It is well known that some compact $3$-manifolds with boundary admit homotopy equivalences that are not homotopic to homeomorphisms. We investigate when the subgroup $\mathcal{R}(M)$ of outer automorphisms of $\pi_1(M)$ which are induced by homeomorphisms of a compact $3$-manifold $M$ has finite index in the group $\operatorname{Out}(\pi_1(M))$ of all outer automorphisms. This question is completely resolved for Haken $3$-manifolds.It is also resolved for many classes of reducible $3$-manifolds and $3$-manifolds with boundary patterns, including all pared $3$-manifolds. The components of the interior $\operatorname{GF}(\pi_1(M))$ of the space $\operatorname{AH}(\pi_1(M))$ of all (marked) hyperbolic $3$-manifolds homotopy equivalent to $M$ are enumerated by the marked homeomorphism types of manifolds homotopy equivalent to $M$, so one may apply the topological results above to study the topology of this deformation space.We show that $\operatorname{GF}(\pi_1(M))$ has finitely many components if and only if either $M$ has incompressible boundary, but no 'double trouble', or $M$ has compressible boundary and is 'small'. (A hyperbolizable $3$-manifold with incompressible boundary has double trouble if and only if there is a thickened torus component of its characteristic submanifold which intersects the boundary in at least two annuli). More generally, the deformation theory of hyperbolic structures on pared manifolds is analyzed. Some expository sections detail Johannson's formulation of the Jaco-Shalen-Johannson characteristic submanifold theory, the topology of pared $3$-manifolds, and the deformation theory of hyperbolic $3$-manifolds. An epilogue discusses related open problems and recent progress in the deformation theory of hyperbolic $3$-manifolds.

Rate this ebook

Tell us what you think.

Reading information

Smartphones and tablets
Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.
Laptops and computers
You can listen to audiobooks purchased on Google Play using your computer's web browser.
eReaders and other devices
To read on e-ink devices like Kobo eReaders, you'll need to download a file and transfer it to your device. Follow the detailed Help Center instructions to transfer the files to supported eReaders.