Dynamic Mars: Recent and Current Landscape Evolution of the Red Planet

· ·
· Elsevier
Ebook
474
Pages
Eligible
Ratings and reviews aren’t verified  Learn More

About this ebook

Dynamic Mars: Recent and Current Landscape Evolution of the Red Planet presents the latest observations, interpretations, and explanations of geological change at the surface or near-surface of this terrestrial body. These changes raise questions about a decades-old paradigm, formed largely in the aftermath of very coarse Mariner-mission imagery in the 1960s, suggesting that much of the interesting geological activity on Mars occurred deep in its past, eons ago. The book includes discussions of (1) Mars' ever-changing atmosphere and the impact of this on the planet's surface and near-surface; (2) the possible involvement of water in relatively new, if not contemporary, gully-like flows and slope streaks (i.e. recurring slope lineae); and (3) the identification of a broad suite of agents and processes (i.e. glacial, periglacial, aeolian, meteorological, volcanic, and meteoric) that are actively revising surface and near-surface landscapes, landforms, and features on a local, regional, and hemispheric scale.Highly illustrated and punctuated by data from the most recent Mars missions, Dynamic Mars is a valuable resource for all levels of research in the geological history of Mars, as well as of the three other terrestrial planets. - Utilizes observational and model-based data as well as geological context to frame the understanding of the dynamic surface and near-surface of Mars - Presents a broad spectrum of highly regarded experts and themes to discuss and evaluate the geological history of late and current Mars - Includes extensive and detailed imagery to clearly illustrate these themes, discussions, and evaluations

About the author

Richard Soare is a physical geographer specializing in periglacial (cold-climate, non-glacial landscapes). Through the last twenty years he has spent considerable time in the Canadian arctic (physically) and off-planet (intellectually), attempting to identify landscapes on Mars present or past possibly molded by the freeze-thaw cycling of water. His work spans the red planet geographically, ranging from the plains of Utopia Planitia in the northern hemisphere and the Moreux impact-crater at the Mars dichotomy through to the Argyre impact-crater in the southern hemisphere. Recently, he lead-edited “Mars Geological Enigmas: from the late Noachian Epoch to the present day and a special issue of Icarus: “Current and Recent Landscape Evolution on Mars.

Susan Conway is a CNRS research scientist in Nantes, France, having graduated with a PhD in planetary science from the Open University (United Kingdom) in 2010. She is chair of the International Association for Geomorphologists (IAG) Planetary Geomorphology Working Group, and has run the Planetary Geomorphology session at the European Geoscience Union since 2011. She is lead editor for a collection of papers on Martian gullies and their Earth analogues, based on the workshop she organized at the Geological Society of London in June 2016 and is co-editor on a collection of papers entitled "Frontiers in Geomorphometry". She is a team member on the High Resolution Imaging Science Experiment (HiRISE) instrument on NASA's Mars Reconnaissance Orbiter and Guest Investigator on the ESA Trace Gas Orbiter mission to Mars, specifically focused on the CaSSIS camera and NOMAD/ACS spectrometer instruments. She is on the author list of 35 peer-reviewed papers concerning the geomorphology of Earth, Mars, Mercury, the Moon and the asteroid Vesta. Her work is concentrated around glacial, periglacial and fluvial landforms on Mars, encompassing field, remote sensing and laboratory simulation data, with a specialty in analysis of 3D terrain data.

Stephen Clifford is a Senior Scientist at the Planetary Science Institute in Tucson, Arizona. He received his PhD in Astronomy from the University of Massachusetts in 1984. His research focuses on the nature, evolution and geophysical investigation of planetary volatiles, with a special emphasis on water on Mars. He is the author/co-author of 70 peer-reviewed publications whose topical focus has varied from investigations of H2O transport in cold planetary regoliths; large-scale groundwater transport; low-temperature hydrothermal convection in a sub-permafrost vadose zone; the formation and stability of gas hydrates; glacial flow and polar evolution; thermal modelling of planetary surfaces; the thermal, seismic and hydrologic effects of impact catering; and radar investigations of subsurface geology and the distribution and state of H2O. He was the principal convener of the 1st-4th International Conferences on Early Mars, 1st-5th International Conferences on Mars Polar Science and Exploration, and the Conference on the Geophysical Detection of Subsurface Water on Mars. Steve is the Deputy Science Team Leader for the WISDOM Ground Penetrating Radar which is part of the payload of ESA’s 2020 ExoMars Rover. He is also a U.S. Participating Scientist on the MARSIS orbital radar sounder on ESA’s Mars Express mission. Prior to joining the science staff at PSI in February 2018, Steve was a Senior Staff Scientist at the Lunar and Planetary Institute in Houston, Texas, where he conducted his Mars research for 34 years.

Rate this ebook

Tell us what you think.

Reading information

Smartphones and tablets
Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.
Laptops and computers
You can listen to audiobooks purchased on Google Play using your computer's web browser.
eReaders and other devices
To read on e-ink devices like Kobo eReaders, you'll need to download a file and transfer it to your device. Follow the detailed Help Center instructions to transfer the files to supported eReaders.