Set-Indexed Martingales

·
· Taylor & Francis
E-Book
224
Seiten
Zulässig
Bewertungen und Rezensionen werden nicht geprüft  Weitere Informationen

Ăśber dieses E-Book

Set-Indexed Martingales offers a unique, comprehensive development of a general theory of Martingales indexed by a family of sets. The authors establish-for the first time-an appropriate framework that provides a suitable structure for a theory of Martingales with enough generality to include many interesting examples. Developed from first principles, the theory brings together the theories of Martingales with a directed index set and set-indexed stochastic processes. Part One presents several classical concepts extended to this setting, including: stopping, predictability, Doob-Meyer decompositions, martingale characterizations of the set-indexed Poisson process, and Brownian motion. Part Two addresses convergence of sequences of set-indexed processes and introduces functional convergence for processes whose sample paths live in a Skorokhod-type space and semi-functional convergence for processes whose sample paths may be badly behaved.Completely self-contained, the theoretical aspects of this work are rich and promising. With its many important applications-especially in the theory of spatial statistics and in stochastic geometry- Set Indexed Martingales will undoubtedly generate great interest and inspire further research and development of the theory and applications.

Autoren-Profil

Gail Ivanoff, Professor of Mathematics and Statistics, University of Ottawa, Ontario, Canada. Ely Merzbach, Professor of Mathematics and Computer Science, Bar-Ilan University, Ramat Gan, Israel.

Dieses E-Book bewerten

Deine Meinung ist gefragt!

Informationen zum Lesen

Smartphones und Tablets
Nachdem du die Google Play BĂĽcher App fĂĽr Android und iPad/iPhone installiert hast, wird diese automatisch mit deinem Konto synchronisiert, sodass du auch unterwegs online und offline lesen kannst.
Laptops und Computer
Im Webbrowser auf deinem Computer kannst du dir Hörbucher anhören, die du bei Google Play gekauft hast.
E-Reader und andere Geräte
Wenn du Bücher auf E-Ink-Geräten lesen möchtest, beispielsweise auf einem Kobo eReader, lade eine Datei herunter und übertrage sie auf dein Gerät. Eine ausführliche Anleitung zum Übertragen der Dateien auf unterstützte E-Reader findest du in der Hilfe.