Smoothing Spline ANOVA Models

· Springer Science & Business Media
電子書
290
頁數
評分和評論未經驗證 瞭解詳情

關於這本電子書

Nonparametric function estimation with stochastic data, otherwise known as smoothing, has been studied by several generations of statisticians. Assisted by the recent availability of ample desktop and laptop computing power, smoothing methods are now finding their ways into everyday data analysis by practitioners.
While scores of methods have proved successful for univariate smoothing, ones practical in multivariate settings number far less. Smoothing spline ANOVA models are a versatile family of smoothing methods derived through roughness penalties that are suitable for both univariate and multivariate problems.
In this book, the author presents a comprehensive treatment of penalty smoothing under a unified framework. Methods are developed for (i) regression with Gaussian and non-Gaussian responses as well as with censored life time data; (ii) density and conditional density estimation under a variety of sampling schemes; and (iii) hazard rate estimation with censored life time data and covariates. The unifying themes are the general penalized likelihood method and the construction of multivariate models with built-in ANOVA decompositions. Extensive discussions are devoted to model construction, smoothing parameter selection, computation, and asymptotic convergence. Most of the computational and data analytical tools discussed in the book are implemented in R, an open-source clone of the popular S/S- PLUS language. Code for regression has been distributed in the R package gss freely available through the Internet on CRAN, the Comprehensive R Archive Network. The use of gss facilities is illustrated in the book through simulated and real data examples.

為這本電子書評分

請分享你的寶貴意見。

閱讀資訊

智能手機和平板電腦
請安裝 Android 版iPad/iPhone 版「Google Play 圖書」應用程式。這個應用程式會自動與你的帳戶保持同步,讓你隨時隨地上網或離線閱讀。
手提電腦和電腦
你可以使用電腦的網絡瀏覽器聆聽在 Google Play 上購買的有聲書。
電子書閱讀器及其他裝置
如要在 Kobo 等電子墨水裝置上閱覽書籍,你需要下載檔案並傳輸到你的裝置。請按照說明中心的詳細指示,將檔案傳輸到支援的電子書閱讀器。