Smoothing Spline ANOVA Models: Edition 2

· Springer Series in Statistics 297. књига · Springer Science & Business Media
Е-књига
433
Страница
Оцене и рецензије нису верификоване  Сазнајте више

О овој е-књизи

Nonparametric function estimation with stochastic data, otherwise

known as smoothing, has been studied by several generations of

statisticians. Assisted by the ample computing power in today's

servers, desktops, and laptops, smoothing methods have been finding

their ways into everyday data analysis by practitioners. While scores

of methods have proved successful for univariate smoothing, ones

practical in multivariate settings number far less. Smoothing spline

ANOVA models are a versatile family of smoothing methods derived

through roughness penalties, that are suitable for both univariate and

multivariate problems.

In this book, the author presents a treatise on penalty smoothing

under a unified framework. Methods are developed for (i) regression

with Gaussian and non-Gaussian responses as well as with censored lifetime data; (ii) density and conditional density estimation under a

variety of sampling schemes; and (iii) hazard rate estimation with

censored life time data and covariates. The unifying themes are the

general penalized likelihood method and the construction of

multivariate models with built-in ANOVA decompositions. Extensive

discussions are devoted to model construction, smoothing parameter

selection, computation, and asymptotic convergence.

Most of the computational and data analytical tools discussed in the

book are implemented in R, an open-source platform for statistical

computing and graphics. Suites of functions are embodied in the R

package gss, and are illustrated throughout the book using simulated

and real data examples.

This monograph will be useful as a reference work for researchers in

theoretical and applied statistics as well as for those in other

related disciplines. It can also be used as a text for graduate level

courses on the subject. Most of the materials are accessibleto a

second year graduate student with a good training in calculus and

linear algebra and working knowledge in basic statistical inferences

such as linear models and maximum likelihood estimates.

О аутору

Chong Gu received his Ph.D. from University of Wisconsin-Madison in 1989, and has been on the faculty in Department of Statistics, Purdue University since 1990. At various times during his career, he has held visiting appointments at University of British Columbia, University of Michigan, and National Institute of Statistical Sciences.

Оцените ову е-књигу

Јавите нам своје мишљење.

Информације о читању

Паметни телефони и таблети
Инсталирајте апликацију Google Play књиге за Android и iPad/iPhone. Аутоматски се синхронизује са налогом и омогућава вам да читате онлајн и офлајн где год да се налазите.
Лаптопови и рачунари
Можете да слушате аудио-књиге купљене на Google Play-у помоћу веб-прегледача на рачунару.
Е-читачи и други уређаји
Да бисте читали на уређајима које користе е-мастило, као што су Kobo е-читачи, треба да преузмете фајл и пренесете га на уређај. Пратите детаљна упутства из центра за помоћ да бисте пренели фајлове у подржане е-читаче.