Smoothing Spline ANOVA Models: Edition 2

· Springer Series in Statistics 第 297 本图书 · Springer Science & Business Media
电子书
433
评分和评价未经验证  了解详情

关于此电子书

Nonparametric function estimation with stochastic data, otherwise

known as smoothing, has been studied by several generations of

statisticians. Assisted by the ample computing power in today's

servers, desktops, and laptops, smoothing methods have been finding

their ways into everyday data analysis by practitioners. While scores

of methods have proved successful for univariate smoothing, ones

practical in multivariate settings number far less. Smoothing spline

ANOVA models are a versatile family of smoothing methods derived

through roughness penalties, that are suitable for both univariate and

multivariate problems.

In this book, the author presents a treatise on penalty smoothing

under a unified framework. Methods are developed for (i) regression

with Gaussian and non-Gaussian responses as well as with censored lifetime data; (ii) density and conditional density estimation under a

variety of sampling schemes; and (iii) hazard rate estimation with

censored life time data and covariates. The unifying themes are the

general penalized likelihood method and the construction of

multivariate models with built-in ANOVA decompositions. Extensive

discussions are devoted to model construction, smoothing parameter

selection, computation, and asymptotic convergence.

Most of the computational and data analytical tools discussed in the

book are implemented in R, an open-source platform for statistical

computing and graphics. Suites of functions are embodied in the R

package gss, and are illustrated throughout the book using simulated

and real data examples.

This monograph will be useful as a reference work for researchers in

theoretical and applied statistics as well as for those in other

related disciplines. It can also be used as a text for graduate level

courses on the subject. Most of the materials are accessibleto a

second year graduate student with a good training in calculus and

linear algebra and working knowledge in basic statistical inferences

such as linear models and maximum likelihood estimates.

作者简介

Chong Gu received his Ph.D. from University of Wisconsin-Madison in 1989, and has been on the faculty in Department of Statistics, Purdue University since 1990. At various times during his career, he has held visiting appointments at University of British Columbia, University of Michigan, and National Institute of Statistical Sciences.

为此电子书评分

欢迎向我们提供反馈意见。

如何阅读

智能手机和平板电脑
只要安装 AndroidiPad/iPhone 版的 Google Play 图书应用,不仅应用内容会自动与您的账号同步,还能让您随时随地在线或离线阅览图书。
笔记本电脑和台式机
您可以使用计算机的网络浏览器聆听您在 Google Play 购买的有声读物。
电子阅读器和其他设备
如果要在 Kobo 电子阅读器等电子墨水屏设备上阅读,您需要下载一个文件,并将其传输到相应设备上。若要将文件传输到受支持的电子阅读器上,请按帮助中心内的详细说明操作。