Structure Theory: Edition 2

· De Gruyter Expositions in Mathematics 38. књига · Walter de Gruyter GmbH & Co KG
Π•-књига
550
Π‘Ρ‚Ρ€Π°Π½ΠΈΡ†Π°
ΠžΡ†Π΅Π½Π΅ ΠΈ Ρ€Π΅Ρ†Π΅Π½Π·ΠΈΡ˜Π΅ нису Π²Π΅Ρ€ΠΈΡ„ΠΈΠΊΠΎΠ²Π°Π½Π΅ Β Π‘Π°Π·Π½Π°Ρ˜Ρ‚Π΅ вишС

О овој С-књизи

The problem of classifying the finite dimensional simple Lie algebras over fields of characteristic p > 0 is a long-standing one. Work on this question has been directed by the Kostrikin-Shafarevich Conjecture of 1966, which states that over an algebraically closed field of characteristic p > 5 a finite dimensional restricted simple Lie algebra is classical or of Cartan type. This conjecture was proved for p > 7 by Block and Wilson in 1988. The generalization of the Kostrikin-Shafarevich Conjecture for the general case of not necessarily restricted Lie algebras and p > 7 was announced in 1991 by Strade and Wilson and eventually proved by Strade in 1998. The final Block-Wilson-Strade-Premet Classification Theorem is a landmark result of modern mathematics and can be formulated as follows: Every simple finite dimensional simple Lie algebra over an algebraically closed field of characteristic p > 3 is of classical, Cartan, or Melikian type.

In the three-volume book, the author is assembling the proof of the Classification Theorem with explanations and references. The goal is a state-of-the-art account on the structure and classification theory of Lie algebras over fields of positive characteristic.

This first volume is devoted to preparing the ground for the classification work to be performed in the second and third volumes. The concise presentation of the general theory underlying the subject matter and the presentation of classification results on a subclass of the simple Lie algebras for all odd primes will make this volume an invaluable source and reference for all research mathematicians and advanced graduate students in algebra. The second edition is corrected.

Contents

Toral subalgebras in p-envelopes
Lie algebras of special derivations
Derivation simple algebras and modules
Simple Lie algebras
Recognition theorems
The isomorphism problem
Structure of simple Lie algebras
Pairings of induced modules
Toral rank 1 Lie algebras

О Π°ΡƒΡ‚ΠΎΡ€Ρƒ

Helmut Strade, University of Hamburg, Germany.

ΠžΡ†Π΅Π½ΠΈΡ‚Π΅ ΠΎΠ²Ρƒ Π΅-ΠΊΡšΠΈΠ³Ρƒ

ΠˆΠ°Π²ΠΈΡ‚Π΅ Π½Π°ΠΌ својС ΠΌΠΈΡˆΡ™Π΅ΡšΠ΅.

Π˜Π½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΡ˜Π΅ ΠΎ Ρ‡ΠΈΡ‚Π°ΡšΡƒ

ΠŸΠ°ΠΌΠ΅Ρ‚Π½ΠΈ Ρ‚Π΅Π»Π΅Ρ„ΠΎΠ½ΠΈ ΠΈ Ρ‚Π°Π±Π»Π΅Ρ‚ΠΈ
Π˜Π½ΡΡ‚Π°Π»ΠΈΡ€Π°Ρ˜Ρ‚Π΅ Π°ΠΏΠ»ΠΈΠΊΠ°Ρ†ΠΈΡ˜Ρƒ Google Play књигС Π·Π° Android ΠΈ iPad/iPhone. Аутоматски сС ΡΠΈΠ½Ρ…Ρ€ΠΎΠ½ΠΈΠ·ΡƒΡ˜Π΅ са Π½Π°Π»ΠΎΠ³ΠΎΠΌ ΠΈ ΠΎΠΌΠΎΠ³ΡƒΡ›Π°Π²Π° Π²Π°ΠΌ Π΄Π° Ρ‡ΠΈΡ‚Π°Ρ‚Π΅ онлајн ΠΈ ΠΎΡ„Π»Π°Ρ˜Π½ Π³Π΄Π΅ Π³ΠΎΠ΄ Π΄Π° сС Π½Π°Π»Π°Π·ΠΈΡ‚Π΅.
Π›Π°ΠΏΡ‚ΠΎΠΏΠΎΠ²ΠΈ ΠΈ Ρ€Π°Ρ‡ΡƒΠ½Π°Ρ€ΠΈ
ΠœΠΎΠΆΠ΅Ρ‚Π΅ Π΄Π° ΡΠ»ΡƒΡˆΠ°Ρ‚Π΅ Π°ΡƒΠ΄ΠΈΠΎ-књигС ΠΊΡƒΠΏΡ™Π΅Π½Π΅ Π½Π° Google Play-Ρƒ ΠΏΠΎΠΌΠΎΡ›Ρƒ Π²Π΅Π±-ΠΏΡ€Π΅Π³Π»Π΅Π΄Π°Ρ‡Π° Π½Π° Ρ€Π°Ρ‡ΡƒΠ½Π°Ρ€Ρƒ.
Π•-Ρ‡ΠΈΡ‚Π°Ρ‡ΠΈ ΠΈ Π΄Ρ€ΡƒΠ³ΠΈ ΡƒΡ€Π΅Ρ’Π°Ρ˜ΠΈ
Π”Π° бистС Ρ‡ΠΈΡ‚Π°Π»ΠΈ Π½Π° ΡƒΡ€Π΅Ρ’Π°Ρ˜ΠΈΠΌΠ° којС користС Π΅-мастило, ΠΊΠ°ΠΎ ΡˆΡ‚ΠΎ су Kobo Π΅-Ρ‡ΠΈΡ‚Π°Ρ‡ΠΈ, Ρ‚Ρ€Π΅Π±Π° Π΄Π° ΠΏΡ€Π΅ΡƒΠ·ΠΌΠ΅Ρ‚Π΅ Ρ„Π°Ρ˜Π» ΠΈ прСнСсСтС Π³Π° Π½Π° ΡƒΡ€Π΅Ρ’Π°Ρ˜. ΠŸΡ€Π°Ρ‚ΠΈΡ‚Π΅ Π΄Π΅Ρ‚Π°Ρ™Π½Π° упутства ΠΈΠ· Ρ†Π΅Π½Ρ‚Ρ€Π° Π·Π° ΠΏΠΎΠΌΠΎΡ› Π΄Π° бистС ΠΏΡ€Π΅Π½Π΅Π»ΠΈ Ρ„Π°Ρ˜Π»ΠΎΠ²Π΅ Ρƒ ΠΏΠΎΠ΄Ρ€ΠΆΠ°Π½Π΅ Π΅-Ρ‡ΠΈΡ‚Π°Ρ‡Π΅.