Output Feedback Reinforcement Learning Control for Linear Systems

·
· Springer Nature
Ebook
294
Pages
Ratings and reviews aren’t verified  Learn More

About this ebook

This monograph explores the analysis and design of model-free optimal control systems based on reinforcement learning (RL) theory, presenting new methods that overcome recent challenges faced by RL. New developments in the design of sensor data efficient RL algorithms are demonstrated that not only reduce the requirement of sensors by means of output feedback, but also ensure optimality and stability guarantees. A variety of practical challenges are considered, including disturbance rejection, control constraints, and communication delays. Ideas from game theory are incorporated to solve output feedback disturbance rejection problems, and the concepts of low gain feedback control are employed to develop RL controllers that achieve global stability under control constraints.
Output Feedback Reinforcement Learning Control for Linear Systems will be a valuable reference for graduate students, control theorists working on optimal control systems, engineers, and applied mathematicians.

Rate this ebook

Tell us what you think.

Reading information

Smartphones and tablets
Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.
Laptops and computers
You can listen to audiobooks purchased on Google Play using your computer's web browser.
eReaders and other devices
To read on e-ink devices like Kobo eReaders, you'll need to download a file and transfer it to your device. Follow the detailed Help Center instructions to transfer the files to supported eReaders.