Learning from Data: Concepts, Theory, and Methods, Edition 2

·
· John Wiley & Sons
3.0
1 review
Ebook
560
Pages
Ratings and reviews aren’t verified  Learn More

About this ebook

An interdisciplinary framework for learning methodologies—covering statistics, neural networks, and fuzzy logic, this book provides a unified treatment of the principles and methods for learning dependencies from data. It establishes a general conceptual framework in which various learning methods from statistics, neural networks, and fuzzy logic can be applied—showing that a few fundamental principles underlie most new methods being proposed today in statistics, engineering, and computer science. Complete with over one hundred illustrations, case studies, and examples making this an invaluable text.

Ratings and reviews

3.0
1 review

About the author

Vladimir CherKassky, PhD, is Professor of Electrical and Computer Engineering at the University of Minnesota. He is internationally known for his research on neural networks and statistical learning.

Filip Mulier, PhD, has worked in the software field for the last twelve years, part of which has been spent researching, developing, and applying advanced statistical and machine learning methods. He currently holds a project management position.

Rate this ebook

Tell us what you think.

Reading information

Smartphones and tablets
Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.
Laptops and computers
You can listen to audiobooks purchased on Google Play using your computer's web browser.
eReaders and other devices
To read on e-ink devices like Kobo eReaders, you'll need to download a file and transfer it to your device. Follow the detailed Help Center instructions to transfer the files to supported eReaders.