The primary objective of this book is to analyze the existence and uniqueness of solutions for functional equations, analyze stability, and achieve the best possible results with minimal error. With a clear and direct approach, it presents advanced concepts in an accessible and comprehensible manner, enabling students to apply their knowledge to solving various problems.
To prevent instability in fractional systems, methods based on fixed-point theory with the best approximation have been utilized. The stability analysis of fractional equations is conducted by considering classical and fuzzy normed spaces and employing special functions as optimal controllers. In fuzzy systems, the Z-number theory has been used to enhance results and improve quality. This theory enables the assessment of approximation accuracy and quality, providing the best possible approximation.
The numerical analysis of fractional systems plays a crucial role in accurately modeling physical phenomena, simulations, and predicting complex systems. By presenting numerical results from fractional systems, which are essential in solving real-world problems and optimizing computational algorithms, this book serves as a valuable resource for both researchers and students.