Optimal Stability Theory and Approximate Solutions of Fractional Systems: New Results on the Analysis of Fractional Equations: Theoretical Insights and Numerical Approximations

· · · ·
· Springer Nature
Ebook
383
Pages
Ratings and reviews aren’t verified  Learn More

About this ebook

This comprehensive book is designed for undergraduate, master's, and doctoral students in mathematics, as well as scholars interested in a deep understanding of fractional problems. The book covers a wide range of topics, including the existence and uniqueness of solutions, stability, optimal controllers, special functions, classical and fuzzy normed spaces, matrix functions, fuzzy matrix normed spaces, fixed-point theory, quality and certainty, and various numerical methods.

The primary objective of this book is to analyze the existence and uniqueness of solutions for functional equations, analyze stability, and achieve the best possible results with minimal error. With a clear and direct approach, it presents advanced concepts in an accessible and comprehensible manner, enabling students to apply their knowledge to solving various problems.

To prevent instability in fractional systems, methods based on fixed-point theory with the best approximation have been utilized. The stability analysis of fractional equations is conducted by considering classical and fuzzy normed spaces and employing special functions as optimal controllers. In fuzzy systems, the Z-number theory has been used to enhance results and improve quality. This theory enables the assessment of approximation accuracy and quality, providing the best possible approximation.

The numerical analysis of fractional systems plays a crucial role in accurately modeling physical phenomena, simulations, and predicting complex systems. By presenting numerical results from fractional systems, which are essential in solving real-world problems and optimizing computational algorithms, this book serves as a valuable resource for both researchers and students.

Rate this ebook

Tell us what you think.

Reading information

Smartphones and tablets
Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.
Laptops and computers
You can listen to audiobooks purchased on Google Play using your computer's web browser.
eReaders and other devices
To read on e-ink devices like Kobo eReaders, you'll need to download a file and transfer it to your device. Follow the detailed Help Center instructions to transfer the files to supported eReaders.