Advancing Recommender Systems with Graph Convolutional Networks

· Springer Nature
Ebook
157
Pages
Ratings and reviews aren’t verified  Learn More

About this ebook

This book systematically examines scalability and effectiveness challenges related to the application of graph convolutional networks (GCNs) in recommender systems. By effectively modeling graph structures, GCNs excel in capturing high-order relationships between users and items, enabling the creation of enriched and expressive representations.

The book focuses on two overarching problem categories: the first area deals with problems specific to GCN-based recommendation models, including over-smoothing, noisy neighboring nodes, and interpretability limitations. The second one encompasses broader challenges in recommendation systems that GCN-based methods are particularly well-suited to address as the attribute missing problem or feature misalignment. Through rigorous exploration of these challenges, this book presents innovative GCN-based solutions to push the boundaries of recommender system design. To this end, techniques such as interest-aware message-passing strategy, cluster-based collaborative filtering, semantic aspects extraction, attribute-aware attention mechanisms, and light graph transformer are presented.

Each chapter combines theoretical insights with practical implementations and experimental validation, offering a comprehensive resource for researchers, advanced professionals, and graduate students alike.

About the author

Fan Liu is a Research Fellow with the School of Computing, National University of Singapore (NUS). His research interests lie primarily in multimedia computing and information retrieval. His work has been published in a set of top forums, including ACM SIGIR, MM, WWW, TKDE, TOIS, TMM, and TCSVT. He is an area chair of ACM MM and a senior PC member of CIKM.

Liqiang Nie is Professor at and Dean of the School of Computer Science and Technology, Harbin Institute of Technology (Shenzhen). His research interests are primarily in multimedia computing and information retrieval. He has co-authored more than 200 articles and four books. He is a regular area chair of ACM MM, NeurIPS, IJCAI, and AAAI, and a member of ICME steering committee. He has received many awards, like the ACM MM and SIGIR best paper honorable mention in 2019, SIGMM rising star in 2020, TR35 China 2020, DAMO Academy Young Fellow in 2020, and SIGIR best student paper in 2021.

Rate this ebook

Tell us what you think.

Reading information

Smartphones and tablets
Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.
Laptops and computers
You can listen to audiobooks purchased on Google Play using your computer's web browser.
eReaders and other devices
To read on e-ink devices like Kobo eReaders, you'll need to download a file and transfer it to your device. Follow the detailed Help Center instructions to transfer the files to supported eReaders.