Vision-based pedestrian detection and estimation with a blind corner camera

· Aus der Reihe: e-fellows.net stipendiaten-wissen · GRIN Verlag
Ebook
82
Pages
Eligible
Ratings and reviews aren’t verified  Learn More

About this ebook

Research Paper (undergraduate) from the year 2006 in the subject Electrotechnology, grade: 1,0, University Karlsruhe (TH), language: English, abstract: Avoiding collision accidents is becoming more and more an important topic in the research field of driver assistant systems. Especially for vision-based detection systems there are various approaches, which are built upon many different methods. This thesis deals with the avoidance of pedestrian accidents, caused by Blind Corner view problems. The presented approach comprises a pedestrian detection subsystem, which is part of a large camera system framework covering observation of the car environment. Based on a Blind Corner Camera and a neural network classification method, research in this thesis is focused on two aspects: detection improvement and danger level estimation. Since vision-based classification methods usually are still not able to yield perfect results, because of the complexity of this task, the detection result has to be improved by preprocessing and post processing. In this work, first, effects of image enhancement methods on detection are tested as preprocessing methods and, secondly, a new approach for a simple tracking and estimation strategy is presented, which improves detection in the way of a post processing method. Finally, information from tracking and prediction is used to estimate a danger level for pedestrians, which provides information about how collisionprone the current situations is.

Rate this ebook

Tell us what you think.

Reading information

Smartphones and tablets
Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.
Laptops and computers
You can listen to audiobooks purchased on Google Play using your computer's web browser.
eReaders and other devices
To read on e-ink devices like Kobo eReaders, you'll need to download a file and transfer it to your device. Follow the detailed Help Center instructions to transfer the files to supported eReaders.